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In this review, analysis is treated as a process of gaining information on chemical composition,
taking place in a stochastic system. A model of this system is outlined, aM a survey of measures
and methods of information theory is presented to an extent as useful for qualitative or identifica-
tion, quantitative and trace analysis and multicomponent analysis. It is differentiated between
information content of an analytical signal and information gain, or amount of information,
obtained by the analysis, and their interrelation is demonstrated. Some notions of analytical
chemistry are quantified from the information theory and system theory point of view; it is also
demonstrated that the use of fuzzy set theory can be suitable. The review sums up the principal
results of the series of 25 papers which have been published in this journal since 1971.

INTRODUCTION

The volume of required information on chemical composition, its time changes
and the spatial distribution of particular components, as provided by chemical
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analysis, is growing steadily. Simultaneously, demands on the rapidity and economy
of the process of acquiring this information, on a better reliability and selectivity
of analytical procedures increase as well; moreover, science and technology are
faced with the problem of quantitating analytes in lower and lower amounts. These
demands are met, partially at least, by new analytical methods being worked out
based on the most diverse principles, developing the corresponding instrumentation
and computer facilities, and by advancing in theoretical fundamentals. In this manner,
analytical chemistry has developed into a methodologically differentiated exact
branch of science, making use of knowledge gained in other branches as well'.

A significant feature of exact sciences and their conceptualization is the use of
notions that are mathematically defined on the one side and empirically grounded
on the other side; such notions become indispensable tools in the basic theoretical
treatment. Since the 1970's, notions, quantities and definitions taken from informa-
tion and system theory2 have been employed in the analytical process description.
Such notions have a marked integrating effect upon the entire methologically diver-
sified analytical chemistry owing to its unified approach based on information
quantities3, and, of course, also owing to its universal validity independent of the
principle underlying the particular method; the fact that their interrelation can be
demonstrated is of importance as well4.

Information theory in conjunction with the system approach to the analytical
process has shown that among factors determining the information gain from an
analytical result is how suitably and from which partial operations the analytical
system has been set up, how scrupulously the partial operations have been performed
and how these proceeded (sampling, sample handling, separation, measurement,
calibration, data handling, etc.). Since the chemical and physical nature of the par-
tial processes and the errors involved are rather well understood now5, an analytical
system is never looked upon as a black box. Thus, the description of the analytical
process from the information theory and system points of view can form a basis
for a further development of universal rules of good laboratory practice6 and for
the theory and practice of quality data assurance7'8. Along with the physico-chemical
laws and rules that also apply to analytical methods, the information-theory and
system approach facilitates seeking for the optimal strategy of addressing particular
analytical problems9.

In the first stage of applying information theory in analytical chemistry, analogies
were sought between the analytical system model and the information transmission
system model; information properties of the analytical results and methods were
characterized by quantities (measures) initially introduced for the purposes of
communication theory. These measures can be well applied in qualitative and identifi-
cation analysis; results of quantitative analysis (multicomponent analysis in parti-
cular), however, have some properties that are not regarded in communication
theory. A model has been therefore created for a system in which the process of
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acquisition of information about chemical composition takes place, and the concept
of the divergence measure'° — which was later extended11 — has been used in as-
sessing this system.

In this paper, which concludes the series Theory of Information as Applied in
Analytical Chemistry comprising 25 papers published in this journal1236 since
1971, an outline is given of a model of the analytical s'stem and of the process
of information acquisition concerning chemical composition; a brief overview of
measures and methods of information theory and the basic concepts of system theory
is also presented to an extent as useful for analytical practice. For a more detailed
explanation of information-theory foundations of analytical chemistry, the interested
reader is referred to monographs'°", papers3739 and, in particular, to the review40.
A survey of quantifications of analytical notions and concepts from the information
theory point of view is given in paper4.

I. BASIC CONCEPTS

Any experiment, also chemical analysis, gives a result which can be

1) a nominal quantity, such as the kind (species), identity, etc. It can be denoted
by a name, symbol, formula, etc., but it cannot be arranged in an order or as-
signed a numerical value;

2) an ordinal quantity, which can be fitted into a seuqence or classed in a level; the
levels, however, cannot be assigned numerical values;

3) a cardinal quantity, which can be expressed as a number with a suitable unit;
it can be a fixed or a random quantity.

For instance, the result of qualitative or identification analysis is a nominal quan-
tity, the result of quantitative analysis is a cardinal quantity expressed as an amount,
concentration or content. The value of any quantitative — even fixed — parameter
obtained by measurement (chemical analysis) is always a random quantity because
of the occurrence of random errors of measurement.

The aim of any experiment — be its result a nominal, ordinal or cardinal quantity
— is to reduce the uncertainty of knowledge of the given object or process, and thus,
to bring some information.

• I. Information on Chemical Composition

Chemical analysis proceeds in a system whose input is a material sample and whose
output is information. Sample is carrier of "latent" information on the chemical
composition as a representative of the material analyzed; actual information is only
extracted from it by a suitable reaction with a reagent or interaction with energy.

We distinguish between the
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(i) analytical result, i.e. information on the chemical composition of sample analyzed,
and the

(ii) analytical information, i.e. information on the composition, its time changes
and spatial distribution of the chemical composition within a certain part of
material reality.

Analytical information is obtained by chemometric processing and interpretation
of a series of results of analyses of different samples, taken from the examined region
in a suitable manner40'41. It is clear that the information gain of the analysis is con-
siderably higher than that of the unprocessed series of the individual results.

In gaining information on chemical composition, two major stages of the entire
analytical process are involved. In the first, information is created and encoded in the
signal; with a simplification, this stage can be said to be the object of analytical
chemistry42. In the second stage, the signal is decoded into the result; this is the
object of chemometry41. The whole analytical system consists of subsystems in which
the operations of the analytical process take place (sampling, decomposition, separa-
tion, measurement, calibration, data handling, etc.). All of the subsystems, their
suitable sequence, relations and feedbacks are necessary for the whole analytical
system to function; on the other hand, errors from operations occurring in them5"
contribute to the overall uncertainty of the analytical result35.

Analytical information is not directly measurable; it is obtained by determining
the level of some analytical property that is closely related with the kind and amount
of analyte present in the sample. Information on the analytical property is usually
encoded into the signal within the analytical process. Analytical signal carrying in-
formation on chemical composition is always tied to a change in the chemical or
physical state (colour reactions, emission or absorption of radiation or particles,
consumption of titrant solution, etc.). The signal can be converted into analytical
information if it fulfils a syntactic, semantic and pragmatic function, as described
in refs37'40. Signal which involves information on chemical composition has a posi-
tion z, which carries information on qualitative composition, i.e. identity of i-th
analyte A1 (i = 1, 2, ..., n), and can take continuous or discrete values z(j = 1,2,

m). Furthermore, the signal has an intensity, y, which contains information on
the actual amount or content of i-th analyte, X. (In this treatment, the true analyte
content will be denoted X and its estimate, i.e. result of quantitative analysis or the
a priori assumption, will be denoted x.) The signal position is either a fixed quantity
(wavelength of a spectral line), or a random quantity (elution parameters in chromato-
graphy) whose expected value can be dependent on the analytical procedure. The
result of signal position measurement, though, is always a continuous random
quantity associated with a probability density p(z), and the signal intensity is always
a continuous random quantity associated with a probability density p(y). Often —
in multicomponent analysis in particular — the signal intensity in a certain position,
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y(z), is considered. The properties of the signal as the analytical information carrier
have been dealt with'°"1'37'40; the signal is of fundamental importance in Belyaev's
considerations42 of the nature of chemical analysis; in Czechoslovakia this concept
has been elaborated by Musil43.

The analytical system must be regarded as stochastic; this means that on repetition
with the same input, a whole probability distribution p(x) with the expected value

and variance ci is obtained at the output. The expected value is said to be correct
if it does not differ statistically significantly from the true analyte content X1. In
identification analysis, also, the established identities of analytes A. must be regarded
with different probabilities P(A1); for P(A) = 1 we say that the identification is
unambiguous. Thus, analytical results invariably involve some uncertainty.

Of importance with respect to the reliability of the result is the way in which the
signal position and intensity are converted into analytical information (see Chapter 5).
In identification analysis, assignment of a signal in position z to the identity of
analyte A, can formally be expressed by the operator relation given in monograph',
p. 10. In practice, this assignment is done by means of tables, collections of spectra,
data banks, etc. In quantitative analysis, the relation x = f(y) is given by the stoi-
chiometric equivalent b = const., i.e. as x = by for chemical methods, or by a calibra-
tion function for instrumental methods. The calibration function has to be deter-
mined empirically as

v(z) f(XaXi} {'fl}) ; i a , (1.1)

where Xa is the true analyte concentration, {X} are concentrations of the other com-
ponents in the sample, and {7} are variables (amounts of reagents added, tempera-
ture, instrumental parameters, etc.). This approach43 allows the sensitivity of the
analytical method to be defined as

S =
1/b (1.2)

for chemical analysis, or as

S = dy(zj)/dXa

or instrumental analysis; the matrix effect can be characterized as the dependence
of y(z) on {X} and the ruggedness of the method as the dependence of z or y, or
of y(z) on {7}.

1.2. Factual and Quantitative Aspects of Analytical Information

Any information, and thus also analytical information, has a factual side (its object)
and a quantitative side (its detailedness). The factual side and the verity of informa-
tion cannot be evaluated quantitatively; it is possible, however, to take into account
the relevance of the experimentally obtained information for solving a given pro-
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blemU39, to determine how precise and accurate the result must be to really con-
tribute information7'11'37, and, to a degree, to assess the plausibility of the result
obtained, i.e. its agreement with the a priori assumption, i.e. assumption that is,
for instance, derived or deduced from a hypothesis30'40.

Information theory enables us to assess the quantitative aspect of analytical
information only, i.e. the contents of the signal, the information gain from the
analysis performed, volume of information obtained by multicomponent analysis,
or information gain emerging on processing the data set to analytical information,
etc. All this is based on Wiener's definition according to which information is reduc-
tion in uncertainty, in lack of knowledge concerning some object or process, its
causes and consequences. Thus, the content of a signal or a separate measurement
or the information gain of the analytical result is expressed as the difference

I=H0—H, (1.4)

where H0 is the a priori uncertainty, existing before the experiment, and H is the
a posteriori uncertainty, remaining after the experiment. The a priori uncertainty
is given by the pre-information necessary for the choice of a suitable analytical
method, and, of course, also by the question (in analytical practice usually: what,
how much, where?) the answer to which is sought by performing the analysis. The
various kinds of analysis, the signal property measured, and the question addressed
by the analysis are given in Table I. The a posteriori uncertainty, caused by the ex-
periment itself, is given by how perfectly the analysis proceeded. The a posteriori
uncertainty of qualitative analysis is affected by how many components can be ex-
pected based on test results; the uncertainty of quantitative analysis is affected by the

TABLE I

Kinds of analysis as answers to a priori questions

Question Signal Kind of analysis

What z identification analysis

What, how much y
y(z)

single-component quantitative analysis
multicomponent quantitative analysis

What, how much, where y(z), 1 local analysis;
structure analysis for l of molecular dimensions

What, how much, when y(z), tb process analysis

Collect. Czech. Chem. Commun. (Vol. 56) (1991)
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precision and accuracy of the result; selectivity is of importance in quantitative,
qualitative and identification multicomponent analysis; in trace analysis, the im-
portant factors are the signal-to-noise ratio, the relation of the actual analyte content
to the detection limit (higher/lower), etc. Of importance is also whether a low a pos-
tenon uncertainty is attained by employing a single method or a combination of
several methods10.

The various measures of information content of the signal or of information gain
of the result of analysis only differ in the way the a priori and a posteriori uncertain-
ties are expressed. Measures such as Brillouin's, Shannon's and divergence measures
and their properties have been compared'1'21'35'40. In this treatment we will demon-
strate those ways of expressing information uncertainty, content and gain, or amount
of information, playing a role in analytical chemistry.

The uncertainty of a nominal, ordinal or cardinal quantity which takes various
possibilities, levels or discrete values i = 1, 2, ..., n with probabilities P, can be
expressed in terms of Shannon's entropy

H(P) —P1 iog P; = 1. (1.5)

As early as 1929, Sziiárd defined information as negative entropy, "negentropy".
The units in which uncertainty is expressed are given by the base b of the logarithm
in Eq. (1.5). For binary logarithms, lb (b 1), the units are "bits"; for natural
logarithms in (b e), the units are "nits". The use of binary logarithms has been
introduced by Hartley so that for an alternative (two-value) phenomenon, where
P1 + P2 = 1, H(P) is unity at P1 = P2 = 1/2. If n> 2, then 0 H(P) log, n;
therefore, the so-called relative entropy

h(P) = H(P)/logb n = —(1/10gb n)P1 logs P (1.6)

is occasionally used in this case. Since logs a/logb n = log a, the relative entropy is

h(P) = — P1 logs P1. (1.7)

Then the relation 0 < h(P) < 1 is always satisfied, and the use of the binary logarithm
can be considered as a particular case of logo with n = 2. Then, it would be necessary
to introduce suitable units, of which "bit" and "nit" would be particular cases.

However, we do not consider it proper to terminologically distinguish between
thermodynamic entropy and information "intropy" (information entropy); on the
contrary, one should always bear in mind the fact that the quantity is a universally
valid measure of uncertainty, disorder, irrespective of the system whose disorder
is characterized by it44.
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Entropy characterizing the uncertainty of a continuous random cardinal quantity
with a probability density p(x)> 0 for x e <x1, x2> is

H(p) = — J p(x) log p(x) dx; $ p(x) dx = 1. (1.8)

This entropy plays the role of a measure of uncertainty of accurate results of direct
measurements. Entropies for continuous distributions are given in Table II. The
transition from the entropy for discrete distributions to the entropy for continuous
distributions has been demonstrated by Peters44; theoretically, H(p) can take values
of —co � H(p) � + 00; in analytical practice, however, these extremes never occur.

The results of quantitative analysis can carry a mean error c5 =X. — 0;
also, the a priori uncertainty cannot be assumed to be based on an absolutely correct
assumption or an absolutely correct pre-information. Then, it is more adequate to
express uncertainty in terms of Kerridge's and Bongard's accuracy measure

H(r, p) = H(r) + D(r, p) — $ r(x) loge p(x) dx, (1.9)

where the "error term" D(r, p) expresses the dissimilarity, divergence of the accurate
distribution r(x) and the experimental distribution p(x); see also refs10'1 1,45,46
and Table III.

The information content of the signal, of the result of observation and of accurate
results of direct measurements can be expressed as the difference of Shannon's
entropies, i.e. for the discrete case of the a priori (P0) and a posteriori probabilities
or conditional probabilities11'29 as

I H(PO) — H(P), (1.10)

and for the case of the continuous a priori p0(x) and the a posteriori p(x) distribu-
tions, as

I = H(p) — H(p). (1.11)

For the same symmetric a priori and a posteriori destributions, e.g. for the a priori
normal distribution NCu0, a) and the a posteriori distribution also normal, N(ii, a2)
a2 o, we have I = log (a0/a); for a priori uniform distribution U(x1, x2) and
a posteriori normal distribution we have I ln (x2 — x1)/a /2ice.

Kateman47 expresses information content by means of reduction of variance
R (a/a0)2, R e (0, 1>, as

I = —(1/2) log R. (1.12)

Details concerning the concept of the information content can be found in
refs1 0,11,21,29,35,36,40,47,48
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When determining the information gain of results of analysis, expressing a priori
uncertainty by means of the Kerridge—Bongard measure, we use the divergence
measure10'1 1,48,

I(p, Po) = H(p, Po) — H(p) = s: p(x) logs [p(x)/p0(x)] dx. (1.13)

TABLE II

Entropies of some continuous distributions

Distribution Probability densitya Entropyb

Uniform

U(x1,x2)
J1/(x1 — x2) (x a <xi, x2>)

(x<x1,x2>)
in (x2 — x1) = in J12

Normal
NCu, v.2) [1/c .J2i)] exp [—(1/2) (c — p)2/c2] in a J2ite

Truncated
normal
TNCu, 2. x0)

ç{1/[1 — F(x0)] a .J2ir} exp.

' . [—(1/2) (x — p)2/0.2]
(Ø (x x0)

in [1 — F(x0)] aJ2ire +
1 (x0 — 4u)f(x0)+

1 — F(x0)

Lognormal
LN(ln p c2 x0)

(x— x0)cr%J21c'
2i (in (x — x0) — in if\ I

L
0 (xx0;x00)

in pa %J2xe

a F(x) is the distribution function of normal distribution; bf(x) is the frequency function of normal
distribution.

TABLE III

Application of various information uncertainty and information content or gain measures

Quantity Uncertainty Eq. Content or gain Eq.

Nominal
Ordinal

discrete J
Cardinal (

continuous

H(P) —P1 log P1

H(p) =
= —fp(x)iogp(x) dx

(1.5)

(1.8)

I = H(P0) — H(P)

I(p, p0) =
= H(p,p0) — H(p)
unbiased results

(1.10)

(1.13)

H(r, p) =
= —fr(x) log p(x) dx (1.9)

lfr, p, p0) =
= H(r, p0) — H(r,p)
biased results

(1.14)
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This measure assumes that the results of analysis are accurate; therefore the a poste-
non uncertainty is expressed by means of Shannon's netropy, and r(x) =p(x) is
inserted in the Kerridge—Bongard measure, which expresses the a priori uncertainty.
In case the results of quantitative analysis may not be accurate, both the a priori
and a posteriori uncertainties are expressed by means of the Kerridge—Bongard
measure, so that the information gain is expressed as

I(r, p, Po) = H(r, Po) — H(r,p) $ r(x) loge [p(x)/p0(x)] dx . (1.14)

This measure is the most general expression of the information gain of results of
quantitative analysis; we refer to it as the extended divergence measure11'28'32'35'40;
see Table III. Of importance is the fact that we need not know the actual distribution
r(x); the knowledge of its expected value and of its variance32 (or an estimate of its
variance7) is sufficient.

The amount of information obtained from the results of multicomponent analysis
is usually expressed as

M = (1.15)

where I is the information gain of the detection, identification or quantitative
determination of components i 1, 2, ..., n. This relation, however, is exactly
valid only if the results are not mutually correlated.

2. QUALITATIVE AND IDENTIFICATION ANALYSIS

Qualitative analysis answers the question whether a substance is present in the
sample, whereas the task of identification analysis is to answer the question which
substance is present (see Table I). The system in which chemical or instrumental
analysis of this kind occurs has a rather simple first stage: the signal (e.g. change
in the colour of the solution or formation of precipitate) either appears or not, or it
lies or does not lie in position z which corresponds to the identity of the analyte
(spectral line or land wavelength, RF value, etc.). The uncertainty of the result of
such an experiment can be expressed in terms of the simplest measure, viz. Shannon's
entropy3"°'1 1,28,29,49-52 where the choice of binary logarithms is suitable for
alternative decision. The use of the relative entropy is warranted for expressing
uncertainty with n possibilities (Eq. (1.7)). Conversion of the result of experiment
into information, however, is easy in the simplest cases only; in other cases, such as
an identification in toxicological or ecological analysis, it may be impracticable
without computer techniques. Therefore, assessment of the information gain of
results of qualitative and, in particular, identification analysis must take into account
the way in which the signal is decoded into information28.
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In the simplest case, where the presence of n components is assumed with equal
probabilities P(A) 1/n, i = 1, 2, ..., n, we have H(P) = —n(1/n) log (1/n) =
= + log n (Eq. (1.5)). The information content of the result of qualitative analysis
then is

I = logn — logn = log (n0/n), (2.1)

where n0 is the number of components sought, the presence of which is assumed
beforehand with equal probabilities, and n is the number of possible, but yet uni-
dentified analytes after performing the experiment.

The use of relation (2.1) for expressing the information content is not limited to
qualitative analysis; the relation can be looked upon as a reduction of the number
of possible variants n0 to n < n0. Or it can be regarded as a reduction in a variety,.
attained, e.g., by classification, by forming clusters, etc. Later, in Paragraph 3.1.,
we shall express information content in terms of reduction of variance or of the
confidence interval width. The reduction of the number of variants frequently
concerns nominal and ordinal quantities; reduction of variance or of the width
of the interval within which lie values that a quantity can take, concerns rather
continuous quantities.

In the case of an unambiguous proof of the presence of a single component we
have n = 1 and I = log n0. For expressing the a priori and a posteriori uncertainties
in terms of relative entropy, logarithms with the same basis n0 n must be used;
then, calculating the a posteriori entropy for P1 0, we put —o log 0 = 0. For
example, if only one out of N = 6 cations (Ag, Pb2, Zn2, Al3, Ca2 and Nat)
can be present in sample, the presence of all of them being considered identically
probable, then in case that addition of dilute HCI gives a white precipitate the
information content of this assay is I = lb (6/2) = 158 bit, whereas if the precipitate
does not form, the information content is 1 lb (6/4) = 058. Hence, the informa-
tion content of the result of qualitative detection depends on whether the expected
component is detected or not9'10. Combinatorial calculus must be sometimes used
for various possible combinations of components, particularly for determining n0
(ref.10). For instance, assuming that out of the N = 6 cations, m 1, 2, ..., 6 cn
be present, the total number of all the possible combinations will be

n0 = N!/[m!(N — m)!]} = 63,

neither Ag nor Pb2 being present in 15 of them. The reaction with dilute HC1
giving no white precipitate then has an information content of I = lb (63/15) =
= 207 bit; if the reaction is positive, i.e. white precipitate appears indicating that
either Ag or Pb2 or both are present, then I = lb [63/(63 — 15)] O39 bit.
The numerous simple but illustrative examples given, e.g., in refs3'9'10'5254 help
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to make clear some general viewpoints, document the importance of a suitable
order of the assays in qualitative analysis, etc.

The case where, e.g. in identification analysis, all of the components are not
expected with the same probability leads to the use of entropy expressed by means
of conditional entropies. This approach enables solving the case of instrumental
identification analysis where the signals can overlap or where their positions can
only be determined with a limited accuracy; it is also possible to solve a case where
the uncertainty of the results is aggravated by the fact that the analytes to be detected
are present in concentrations close to the detection limit29. Denote P(z3 1A1) the
probability that signal appears in position z, j = 1, 2, ..., m, if analyte A1 is present,
and denote P(z J X.) the probability that the signal appears if analyte A1 is present
in concentration X,. The two probabilities — of which P(z I A1) is actually a parti-
cular case of P(z X1) for X. much higher that the detection limit — can be estab-
lished experimentally, e.g. as the frequency of appearance of signal in position Zj
in dependence on X1, which is the basis of frequentomertric analysis3'9'51. The
probability that component A. is present if signal appears in position z, that is,

P(A1 J Zj) = 1 for case where this signal is not disturbed by a signal corresponding
to another component. Then the detection is unambiguous, the a posteriori un-
certainty H(P(A I z)) = 0, and the information content of the detection is I = H0,
which is the maximum. If the condition of "undisturbed" signal is not fulfiled, the con-
ditional probability must be determined by using Bayes' rule. This rule, which is some-
times referred to as the theorem of probability of causes, is given by the relation

P(A1 I z) = P(A1) P(z A1) i = const. (2.2)

P(A1) P(z A1)

for i = 1, 2, ..., n. In analytical experiment conditions, we have P(A1) = 1 if the
analyte is added, and P(AI) = 0 if the blank experiment is performed. To a first

approximation, P(AI J z) = 1/kfor interferents A,, i = 2, 3, ..., k and for P(z A1)=
= 1. The uncertainty of a single detection can be expressed in terms of the so-called
component entropy for conditional probabilities,

H(P(A J z)) = — EP(AI Zj) lb P(A1 J z); j = const. (2.3)

The use of binary logarithms log2 a = lb a is commonplace for expressing the un-
certainty of qualitative analysis49'51'52'54 because an alternative phenomenon is
evaluated: the signal does or does not appear, the analyte is or is not present, etc
For n > 2 possibilities, e.g. in identification analysis, the use of the relative entropy
with logarithm base b = n (Eqs (1.6) and (1.7)) may be convenient. It will be clear
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that the base and the units in which the information quantities are expressed have no
effect on the practical conclusions drawn from the information-theoretical considera-
tions.

The amount of information derived from multicomponent identification analysis
in which n components are simultaneously detected by measuring signal in m n
positions can be expressed as

M = — PO(AI) lb P0(A1) + P(A1 I z) lb P(A1 z). (2.4)
i=1 j=1 i=1

This amount of information primarily depends on the selectivity of the experiment;
later it will be shown how the selectivity of qualitative or quantitative multicom-
ponent analysis can be characterized by means of entropy that characterizes the
a posteriori uncertainty from Eq. (2.4) and is given by

H(P(A I z)) = - P(A I z) lb P(A1 I z). (2.5)
j=1 i=1

It can be regarded as the sum of the component entropies (Eq. (2.3)) over all signals
j = 1, 2, ..., m. For qualitative or identification analysis it is calculated from the
(n x m) matrix of conditional probabilities P(A z) (refs9'11'28'51'52). If this
matrix is a unit diagonal one, i.e. P(A 1 z) = 1 and P(A1 z) = 0 (i j), the proce-
dure is perfectly selective. Selectivity as a property of multicomponent analysis will
be also dealt with in Paragraph 4.1. Here we only mention the fact that related with
the selectivity of the process of multicomponent qualitative or identification analysis
is the equivocation49

E = — P(z) P(A z) lb P(A z) = — P(z) H(P(A z)), (2.6)j=1 i1 j1
where H(P(A z)) is the entropy for conditional probabilities according to Eq.
(2.3). The probability of appearance of signal, P(z) — which in Eq. (2.6) has the
meaning of a "weight" assigned to the entropies — is

P(z) = P(A)P(z I At).

Since usually P(A) 1/n, equivocation is largely calculated as

E = — (1/n) P(z A1) P(A1 I z) lb P(A1 I z). (2.7)
j=1 i=1

Equivocation characterizes the selectivity of the procedure, serves during the opti-
mization of the qualitative multicomponent or identification analysis procedure,
enables signal superposition to be quantified, etc.
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For instance, in qualitative planar chromatography of three components, which
are expected with the the same probability, we obtain Gaussian signals whose width
is characterized by the value ci = 002 RF units and the attained precision of measure-
ment is q = 005 R units. What is the equivocation of the entire procedure? Is the
equivocation affected by the position z in which the signal is read (measured)?
The positions in which the signals for components A1, A2, A3 reach their maxima
are z1 = 020, z2 025 and z3 035. These data indicate that the separation
of the components, A1 and A2 in particular, will be poor. We set up the matrix of
probabilities P(z JA) based on experimental data, calculate the sums P(z A1)
for all positions z, set up the matrix of probabilities P(AI J Zj) by calculation using
the Bayes rule (2.2), and determine

H = — (1/3)P(z
I A) P(AI z) lb P(A I z).

Equivocation then is readily calculated as the sum of H values for those positions
z in which the signal is read. An overview is presented in Table IV. Reading the
signals in the positions of the maxima, i.e. at = 020, 025 and 035, we have
E = 0310, but if the signal for component A1 is sought at = 015, where the
value is not maximum but the signal is no more distrubed by the other components,
then E = 0155 and the entire procedure is more selective. Zero equivocation cannot
be achieved in this case because signal of component A2 will always be disturbed
by signals from components A1 and A3.

These calculations and considerations derived from them are based on the as-
sumption that the concentration of analyte X1 is always higher than the detection
limit, so that small changes in it have no effect on the appearance of the signal, be
it a colour reaction or spot identification, the presence of a line at a given wavelength

TABLE IV

Matrices P(zA) and P(A1z) and entropy H

z — P(z!A1)
——--

A3
P(zA1)

A1

P(A1!z)
H

A2 A3A1 A2

015 0105 0 0 0105 1 0 0 0000
020 0790 0105 0 0895 0883 0117 0 0155
025 0105 O790 0 0895 0117 0883 0 0155
Ø3Ø 0 O105 0 105 0210 0 0500 O500 0070

035 0 0 0790 0790 0 0 1 0000

040 0 0 0105 01O5 0 0 1 0000
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in the spectrum, etc. However, if analyte is to be detected at a concentration appro-
aching the detection limit, then P(z X1) depends on X. This dependence was studied
by Liteanu51'52, who was able to demonstrate that its shape corresponds to that
of the normal distribution function. Probability P(z J X1), i.e. the conditional
probability that signal appears in position z at an analyte concentration X, how-
ever, is also determined by the reaction sensitivity29 or, in instrumental analysis,
detector sensitivity. Since in qualitative analysis only two possibilities exist, viz, that
the signal intensity is or is not discernible from background (V =1 or Y = 0, respecti-
vely), the conditional probability has been introduced in ref.29 that the signal at
analyte concentration X appears, i.e. P(Y = 1

J X1), or it does not, P(Y 0 X1);
Shannon's entropy is defined as

H(P(X Y = 1)) = — >P(X1 Y = 1) lb P(X1 I Y = 1) (2.8)

and equivocations as

E P(Y) H(P(X }); j = 1,2, ..., m. (2.9)
Yj=O

The use of these quantities is only reasonable for a rather narrow concentration region,
for which 0 P(Y = 1 X1) 1. This concentration region is referred to by Litea-
nu5' as the region of uncertainty of qualitative detection.

All the above considerations apply if a single signal in position z corresponds to
each analyte A; this is commonplace, for instance, in chromatography. In other
cases, however — such as emission spectrography — more signals in positions z,
j 1, 2, ..., k, correspond to each analyte. We can introduce, though rather for-
mally, the quantity

H(P(AI z)) = —P(A1 z) lb P(A1 z); i const. (2.10)

and refer to it as the signal entropy. Rather than the value of this entropy, it is of
importance whether signals for analyte A1 in different positions are disturbed by
the same or always a different component of the sample analyzed, whether the com-
ponent is a majority, minority or trace one, etc. At imperfect selectivity of multi-
component analysis of minority or even trace components, the case where the majo-
rity component interferes with the determination is the most unfavourable. The
uncertainty of detection of analyte A1 reduces considerably if, based on the absence
of signal in another position, that component which interferes with the analyte
signal can be ruled out. In principle, it is possible to find a mathematical expression
for the information content of the signal taking into account whether and to what
extent this signal is disturbed by another signal; this, however, would hardly be of
practical value. It is sufficient to take into consideration the fact that in detecting
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or identifying a certain component, the total composition of the sample and its
variability must be known and taken into account. This has been stressed in ref.9.
All these facts qualitatively agree with experience; information theory, however,
enables us to quantitatively express the weight of the effect of the various factors
on the uncertainty of results of qualitative or identification analysis.

The main results following from information-theory considerations for the practice
of qualitative or identification analysis can be summarized as follows:

1) Results of qualitative and identification analysis are nominal quantities, una-
menable to evaluation by statistical methods. Therefore, the application of quantities
defined in information theory to the assessment of results and optimization proce-
dures of qualitative and identification analysis is of particular importance.

2) The uncertainty of results of qualitative and identification analysis can be ex-
pressed by Shannon's entropy.

3) If the presence of all components is assumed to be equally probable, the entropy
reduces to the logarithm of number of these components (Eq. (2.1)); else, either
entropy according to Eq. (1.5) or entropy for conditional probabilities, e.g. according
to Eq. (2.3) must be used. The a priori uncertainty will frequently be expressed by
the conventional probability; the a posteriori uncertainty then — according to
circumstances — can also be expressed in conditional probability terms (Eq. (2.5)).

4) Conditional probabilities, P(AI z), i.e. probabilities that analyte A1 is present
if signal appears in position z, enable us:

a) To express the component entropy H(P(A z)) according to Eq. (2.3), which
characterizes the information uncertainty of the analytical signal in position z
and makes it possible to find the most suitable signal positions for the detection
of the individual analytes. The conditional probability P(A J z) also serves as
a basis for determining the signal entropy H(P(AI z)) according to Eq. (2.10) which
characterizes the selectivity of the entire procedure.
b) To introluce equivocation (Eqs (2.6), (2.7) and (2.9)) as a characteristics of
selectivity of multicomponent qualitative and identification analysis procedure.
The optimization of the procedure can be conducted so as to achieve the minimum
equivocation.
5) The uncertainty of analyte detection in a concentration approaching the detec-

tion limit also depends on the sensitivity of the chemical detection or, in instrumental
analysis, on the detector sensitivity. This sensitivity is defined by Eq. (1.2) or (1.3).
6) Transformation of information obtained by a qualitative experiment into in-

formation on the presence or identity of analytes can be differently complicated;
invariably, however, the total composition of sample must be taken into account.

7) The most important property of multicomponent qualitative or identification
analysis procedures is selectivity, which can be characterized by the value of the
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entropy H(P(A I z)) according to Eq. (2.5), which can be looked upon as the sum
of component entropies over all signals, or of signal entropies over all components.
Alternatively, selectivity is expressed by equivocation according to Eqs (2.6), (2.7)
or (2.9).

8) If the selectivity of a multicomponent qualitative or identification analysis is
imperfect, the overall sample composition and its variability must be taken into
account, particularly during the procedure optimization. Most dangerous in multi-
component qualitative analysis of minority or even trace components is the case
where the suitable signal is disturbed by a signal corresponding to the majority
component.
9) When expressing the information content of results of qualitative or identifica-

tion analysis according to Eq. (2.1), the amount of information according to Eq.
(2.4), entropy according to Eqs (2.3), (2.5) or (2.10), and equivocation according to
Eqs (2.6), (2.7) and (2.9), binary logarithms are frequently employed, because alter-
native phenomena or two-valued (0,1) quantities are the object of evaluation. The
use of logarithms to the base b n is equally justified when deciding about n pos-
sibilities. The logarithm base, however, has no effect upon the conclusions following
from the information-theory considerations.

3. QUANTITATIVE SINGLE-COMPONENT ANALYSIS

The results of quantitative analysis answer the question of what the amount of a cer-
tain analyte (in single-component analysis) or amounts of more analytes (in multi-
component analysis) in the sample analyzed are.

The system in which the quantitative analysis takes place always consists of a larger
number of subsystems. In the first stage, during which information is created, these
include, e.g., sampling, sample decomposition and preparation, measurement
itself, etc. In the second stage, i.e. the stage of signal processing, the subsystems
usually include calibration and calculation of the result and its metrological charac-
teristics. The function of each of the subsystems, their sequence and interrelations,
are vital to the process; each, however, also contributes to the random component
(sometimes also to the bias) of the a posteriori uncertainty, as demonstrated in
refs1 1,34,37 Sometimes the contributions of the operations to therandom error or
bias can be determined by calculations based on chemical and physico-chemical
laws and rules such as the chemical equilibrium law (ref.5). Never, however, can an
analytical system be regarded as a black-box2. The fact that the operations of the
analytical procedure affect the final result is the starting point of seeking for the
optimal strategy9, i.e. otimization of the individual operations and seeking for their
optimal linking. The way in which information on the signal intensity y or y(z) is
transformed to information is of importance as well (Chapter 5).
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3.1. Determination of Majority Components

The result of quantitative analysis is a continuous random quantity. Its distribution
is frequently assumed to be normal, and for higher analyte contents this assumption
is usually warranted. In accordance with Eqs (1.13) or (1.14), the expressing of the
information gain is associated with the use of the Kerridge—Bongard measure as
a characteristics of the a priori uncertainty; the a posteriori uncertainty is expressed
by the entropy (1.8) or by the Kerridge—Bongard measure, according to whether
accuracy of results is assumed or the occurrence of a bias is admitted. The problems
of bias have been dealt with, e.g., in papers'6"7'21'22'24'25'27'28'36 in the series
Theory of Information as Applied in Analytical Chemistry, in monographs5'9
and elsewhere; however, a purposeful expression of its effect on the information gain
of results of quantitative analysis was only made possible by the introduction of the
extended divergence measure7'28'30'32'34 This measure also enables data quality
assurance, the laboratory information management system, good laboratory prac-
tice, etc., to be put on a rational information-theoretical and system basis36. The
system approach'1'28'34 made it possible to demonstrate the effect of partial opera-
tions of the analytical procedure on the a posteriori uncertainty, i.e. on the precision
and accuracy of the results.

Of fundamental importance for determining the information gain of quantitative
analysis according to Eq. (1.4) is the way the a priori and a posteriori distributions
are expressed. If we known no more than that ,u,, e <x1, x2>, we use the a priori
uniform distribution U(x1, x2). The a posteriori distribution is most frequently
assumed to be normal (Gaussian), N(ii, a2); this assumption is sometimes applied
to the a priori distribution too. The probability densities of these distributions and
their entropies are given in Table II. The a priori uncertainty of quantitative analysis
is usually expressed by the Kerridge—Bongard measure because the a priori assump-
tion may not be correct. If it is correct, H(r, p) reduces to H(p): for instance, for
p(x) —* U(x,, x,) and r(x) —N(i, a2), if x1 + 3 x2 — 3a we have

H(r, p) = in [1/(x2 — x,)] = H(p). (3.1)

If the a priori uncertainty or the preinformation is determined by the result of a preli-
minary analysis, screening for instance, then for r(x) -÷ N(jUr, a) and p(x) — N(1u, cr2)
the Kerridge—Bongard measure is

H(r, p) in a J2ire' + (1/2) [(/1. — 12)1012, (3.2)

where k = (ar/a)2; again, for i- = 12r and a2 = a, when k = 1, we have H(r, p) =
= H(p). In Eq. (3.2), for the usual values of 0 k 1, the relations are 25O7=
= J2ir � J2ice" � /2ire = 4133 and O919 � In \/21te' � F419, so that the
difference between its maximum and minimum values is 05, which is not negligible.

Collect. Czech. Chem. Commun. (Vol. 56) (1991)



Review 523

The information gain for a priori uniform and a posteriori normal distributions
assuming that the results are accurate and that x1 + 3cr < x2 — 3cr, is given
by the divergence measure according to Eq. (1.13) and takes the value

I(p, Po) = in [(x2 — x1)/(a J2ire)]. (3.3)

This relation has been derived and discussed in monograph'°, and its properties as
the measurement information are analyzed in the theoretical work55. If the condition
x1 + 3cr � ji x2 — 3cr is not met — or if (x2 — x1) 6cr — the information
gain is given10 by the relation

I(p Po) in
—

+ — zif(zi)1
(3.4)[F(z2) — F(z1)] a J2ite 2 [ F(z2) — F(zi) J

where F is the distribution function and f the freqency function of the normal distri-
bution and ; = (x — /2)/a, i = 1, 2. Information gain I(p, Po) then is invariably
positive and also depends on the difference between t and the limiting value of x1
or x2. This case is a model of an incorrect a priori assumption or of a situation, rather
rare in analytical practice, where the a priori uniform distribution is too narrow, so
that (x2 — x1) < 6cr.

The true value of the parameter a is usually unknown and is estimated as

= s /(
1 (x -

)2) (3.5)
\j \n — 11=1

If the arithmetic mean is reported as the result,

= = (1/fl)X. (3.6)

then a S/%Jfla must be inserted in Eq. (33); a is the number of parallel determina-
tions from which the average has been calculated. Also, J2,te must be replaced by
2t(x,f) where t(x,f) is the critical value of Student's distribution for f = — 1
where n is the number of parallel determinations from which the standard deviation
estimate is determined according to Eq. (3.5). Additional details concerning the
notions used in this treatment can be found, e.g., in refs5'9. The c value is chosen so
that t(cx,fmax) (1/2) /3ire = 2066 (refs7'10). Then we have

I(p, Po) = in {(x2 — xi) Ifla/[2St(,f)]} (3.7)

This relation has been given in the first paper12 in the present series, where it served
for the discussion of the effect of the numbers of parallel determinations a and ii,;
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for additional details see refs7'911'37 Eq. (3.7) can be regarded not only as an esti-
mate of the information gain in divergence terms, but — within Briliouin's concept
— also as a reduction of the (x2 — xi) interval to an interval whose width is
2St(X,f)iIfla (ref.). Some reservations against the use of Brillouin's measure in ana-
lytical chemistry are given in ref.21.

Let us determine the information gain from the determination of 005 to 600%
of manganese in steel if o• = 0006%. According to Eq. (3.3), the information gain
is I(p,p) = in [(6.00 — 005)/(0006 . 4.133)] = 548 natural units. Actually, how-
ever, the o value is unknown, therefore from n = 8 we determine the estimate s =

0081; we take n = 25 as the maximum performable number of parallel deter-
minations, hence fmax = 24. Since t(005; 24) = 2064 (1/2) ,/2ite, we use the
critical value t(0.05; 7) = 2365 and carry out a 2 parallel determinations.
Then I = in [(6.00 — 005) \/2/(2 . 00081 . 2.365)]

— 539 natural units. The dif-
ference from I(p, Po) thus is not too high. If the number of parallel determinations
were increased to a = 3, we would have I in [(6.00 — 005) \/3/(2 . 00081.
2365)] = 559 natural units, and for additional increase to a = 4 the result

would be / = 574 natural units. Additional increase in the number of parallel
determinations would affect the information gain to an even lower degree.

So far we dealt with accurate results of quantitative analysis. If, however, we must
admit that the result may involve a nonzero mean error (bias) (5 0, then the in-
formation gain is given by the extended divergence measure as

I(r, p, Po) = logs [(x2 — x1)/(a 2ire)] — (1/2) ((5/)2 logs e (3.8)

or, in natural units, as

I(r, p, Po) = in [(x2 — x1)/(a J2xek)] — (1/2) ((5/a)2. (3.9)

In chemical analysis procedures, bias can arise, e.g., as a consequence of the esta-
blishment of a "nonquantitative" equilibrium5; in instrumental techniques, bias
rather arises from improper calibration or from the calibration procedure or standards
available being inadequate for a perfect elimination of errors appearing during the
analysis. Eq. (3.9) is derived in ref.32 and its properties are demonstrated in refs35'36.

Relation (3.3) for the information gain of accurate results of quantitative analysis
can be written in a simpler form as

i(p'po) = —(1/2) In R + (1/2) in [12/(2xe)] , (3.10)

where the variance reduction47 R = (a/a0)2, R E (0, 1>, and (1/2) in [12/(2ire)] =
= —0176. For instance, for a = 0006 and x2 — x1 = 595, hence for the standard
deviation of the a priori rectangular distribution, we have cr s.9s//12 = 17176,
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so that R = 122. iO- and —(1/2)in R = 5657. The information gain then is
I(p, Po) = 5657 — O176 = 5481, i.e. it attains the same value as calculated in the
preceding example. Calculation by Eq. (3.10) is, of course, simpler than by the defini-
tion relation (3.8).

Similarly, Eq. (3.9) can also be expressed by means of variance reduction as

I(r, p, Po) = —(1/2) in R + (1/2) in [12/(2ire1')] — (1/2) ((5/o.)2 . (3.11)

Here, for 0 � k � 1 we have (1/2) in [12/(2ite)] = —0176 (1/2) in [12/(2ltek)] <
+ 03235 (1/2) in [12/(2it)]. Expressing (5 = az(x) where z(cc) is the critical

value of normal distribution for the (1 — ct) level at which the bias (5 is statistically
significant, the information gain of results involving this bias is

I(r, p' Po) = (1/2) { —In R + in [12/(2rrek)] — z()2}. (3.12)

For the case that the preinformation is a normally distributed result, e.g. of scre-
ening analysis10'17'35'48, the a priori and a posteriori uncertainties are given by the
entropy, and the information content according to Eq. (1.11) is

I = In (a/ce) = —(1/2) in R, (3.13)

where R = (a/a0)2 is variance reduction35'47. This approach is suitable if good labora-
tory practice6 and quality data assurance methods7'8 prevent bias from appearing
(refs35'36'40). Information gain for accurate results can be expressed in divergence
measure terms10'17'35 as

I(p' Po) = in (ao/a) + (1/2) [(ii - 11o)2/a + (a2 - a2)/a2] =

= —(1/2) In R + (1/2) [u — iLo)2/ao + (R — 1)] ; (3.14)

for inaccurate results it can be expressed in extended divergence terms35 as

I(r, p' Po) = in (a0/a) + (1/2) [(j — ii0)2/a +
+ k(a2 - a)/a] - (1/2) ((5/a)2 (3.15)

or, on inserting R = (a/a0)2 and z() = ((5/a), as

P' Po) = —(1/2) in R + (1/2) [( — j0)2/a + k(R — i — )2] (3.16)

if k is low enough for the relation k(R = 1) 4 —in R to hold true, then

I(r, p, Po) = —(1/2) In R + (1/2) [(,—0)2/a — z()2], (3.17)
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where z(cz) is the critical value of normal distribution at the level at which the bias
is statistically significant.

Thus, for accurate results, when z(x) = 0, k = 0-0625, and for R = i0 we
have —(1/2) ln R = 3454; then (1u — jig) cr has a negligible effect. For example,
for (u — = 05cr the information gain is I(r, p, Po) = 3454 + 0125 = 3579.
However, for a surprising result where, for instance, (j — = 265cr0, we have

I(r, p, Po) 3454 + 3511 = 6965 natural units. On the other hand, (1/2) k(R — 1)
= 0031 is virtually negligible against —(1/2) in R 3454.

Consider Eqs (3.3), (3.4) and (3.7) through (3.17) as mathematical models of
various cases of information gain of quantitative analysis; we shall discuss them in
some more detail. According to these relations, information content or gain can be
expressed by means of three terms. The first, —(1/2) ln R, shows the effect of variance
reduction47, i.e. improvement of the random uncertainty component resulting from
the carrying out of the analysis. The second term, —(1/2) z(x), characterizes the
accuracy of the results, the statistical significance of the bias being more important
than its actual magnitude. For accurate results this term vanishes. The third term
involves the remaining properties of the result that are included in its uncertainty35'36.
For instance, information content I(p, po) according to Eq. (3.13) and information
gain I(r, p, Po) according to Eq. (3.14) comprise the (/1 —p)/ term which is no
metrological quantity dependent on the properties of the analytical method, which,
however, characterizes the "moment of surprise" from the result ji or its "plausibi-
lity", i.e. agreement with the a priori assumption u0 following, for instance, from
the theory'7'30'35. When expressing the information gain of results which may
involve bias 5 0, this third term also depends on the k = (or/cy)2 ratio, etc.

Relations (3.8), (3.9), (3.11), and (3.15) through (3.17) enable the I(r, p, Po) value
to be determined in all cases, where the bias S is known from theory or can be
established experimentally. From theory, S can be determined in titrimetric methods
by equilibrium calculations (the so-called titration error5) or, in instrumental neutron
activation analysis, from the accuracy of adjusting the detector with respect to sample;
conclusions concerning the information gain of this method and optimization of its
procedure are given in refs57'56. In analytical practice, bias is frequently determined
by carrying out a blank experiment S. By subtracting it, the bias is eliminated or at
least reduced; variance, however, increases, viz, by the blank experiment variance
cj, so that

= + a) (3.18)

where a is the initial variance. For a = a we have a = a \12 l4l4a1. In
monograph'°, Paragraph 6.5., it is demonstrated that subtraction of the blank

a Jln 2 invariably results in information content increase. For example, in
a determination of 005—60% manginese in steel, a = 0006%. Provided that the
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results are accurate, I(p, Po) = 548 natural units. However, verification of the
method by using a reference material (k = 0.0625) reveals that a bias of ö = 0008%
is present. Since J2,tek = 2586, we have I(r, p, Po) = in [(6.00 — 005)/(0006.

2.586)] — (1/2) (0.008/0.006)2 = 5•95 — 089 = 506 natural units. This bias can
be eliminated by subtracting the blank; although the standard deviation is thereby
increased to o = 0006 J2 = 00085, we obtain I(r, p, Po) = in [(6.00 — 0'05)/
/(00085 . 2.586)] = 560 natural units. Thus, subtraction of the blank brough about
a substantial increase in the information gain of the result of determination of
manganese in steel.

All the above considerations were made assuming that the parameter o is known;
similar conclusions follow from the use of I(p, Po) according to Eq. (3.7) or I(r, p, Po)
= in [(x2 — x1) ..Jfla/2St(c1,f)] — (fla/2) (d/s)2 for the estimate = s and for =
= d = (X — ). For instance, if we determine 01 to 15% Cu by a method of which
we do not know whether it is associated with a bias, we analyze a standard sample
containing F67% Cu. We perform always a = parallel determinations, so that
t(00389; 2) = 49282 because z(00389) (1/2) J2te = 2066. The first day we
obtained the following results: F68, 169 and 170% Cu, i.e. = F69% Cu, s = 001,
d = 002% Cu. Thus, l(r, p, Po) = in [(150 — 0.01) J3/001 . 2 . 49282] — (3/2).
• (002/001)2 = 5568 — &000 = —043 natural units. The results obtained the
next day were: F68, 167 and 166% Cu, s = 001% and d = 0; thus I(r, p, Po)
= 5568 natural units. The blank is small, d0 = 0005, so that the first day's results
after its subtraction represent information gain of l(r, p, Po) [(15.0 — 0.01)

\/3/00141 . 2 4.9282] — (3/2) (002 — 0005/00141)2 = 5224 — 1698 = 3526
natural units. For the second day's results we have I(r, p. Po) = 5224 — (3/2).

(_0005/0.0141)2 = 5036 natural units. This example illustrates the fact that it is
appropriate to subtract the blank result even if it only partly compensates the bias,
and it also demonstrates that the actual information gain attained by an analysis
varies appreciably with the results obtained. Thus, we can speak about the informa-
tion gain stability in dependence on concrete analytical results. This information
gain stability naturally depends on the "ruggedness" of the analytical method, on
how its results depend on the conditions in which the analysis occurs.

In practice, however, we do not concern ourselves with mean errors insignificant
at a chosen level, e.g. (1 — cc) = 0•95, and regard them as a consequence of random
errors. In relations for I(r, p, p) and I(r, p, Po)' however, any mean error value
should be inserted irrespective of whether it is statistically significant or not; the
(1/2) z(cc)2 value e.g. for cc = 005 is 192 if the information gain is expressed in
natural units. Furthermore, determining 5 is frequently impracticable, only d =
= (X — ) can be determined and the relation c = d can be adopted for the ana-
lysis, which, however, in view of the existence of the matrix effect may not be true.
Moreover, the X value is only known with a precision characterized by the standard
deviation r• Therefore, when using Eqs (3.8) and (3.15) we put r(x) — N(X, o),
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k = ((7r10)2 and z(c) = ((5/cr) bearing in mind the fact that this is a first approximation

only (see also refs7,3437). The dependence of I(r, p, Po) according to Eqs (3.8),
(3.9) and (3.15) on the precision and accuracy of the results has been discussed in
ref.35 and is shown in Fig. 1.

The quantity k = (o•/cr)2, k e (0, 1> characterizes the reliability of verification
of the accuracy of analytical results. This also differentiates Eq. (3.9) for (5 =0
from Eq. (3.3), or (3.15) for (5 =0 from Eq. (3.14). Relations (3.3) and (3.14) model
a case where (5 = 0 is assumed, whereas relations (3.9) and (3.15) model a case where
the existence of a nonzero bias is admitted but it is proved experimentally that (5 = 0.

Therefore, for k < 1 the information gain according to Eqs (3.9) and (3.15) for (5 = 0
is higher than that according to Eqs (3,3) and (3.14); the difference is a contribution
to the information gain following from the fact that a verified method is used. This
difference is determined by how realiable the employed standard or reference material
(RM) is. Regardless of the a priori distribution, it can be as high as 05 natural units
(see also refs32'36'37).

The following will be clear from what has been said: in cases, which are common
in analytical practice, namely that calibration proves that the bias at a chosen
(1 — o) level is insignificant but we do not know its actual value, we only know that

6 a
6

/ I2H
Q L - - I _J

001 010 020 0

FIG. I

Dependence of information gain (I) on the precision (a) and accuracy (b) of results of quantitative
analysis. a Dependence of I(r, p, p0) on a, k 1, a priori distribution rectangular. Curves: I
(x2 — x1) 1 000; 3 (x — x1) == 10, a priori distribution normal, p p; 2 C = 15; 4

06. b Dependence of I(r, p, Po) on z= 5/c, k 1. Curves: I (x — x1) = 1 000, a 001;
2 a0 = O6, ji = p, a = 008. Hatched region: results involve a mean error statistically significant
at the (1 — c) = 095 level

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

4



Review 529

X2X1 2 X2X1in
k

— — z(ci) � I(r, p, Po) in (3.19)
a J2ice 2 a2

While the upper limit of this interval is always positive, the lower limit may be nega-
tive. For a homoskedastic calibration dependence, a1 = a2; for a heteroskedastic
dependence32 a value must be inserted for a1 such that the information gain is mini-
mal, which may not be the maximum a value; for a mean error constant over the
entire <x1, x2> region this is usually the value a = (5.On the other hand, the minimum
a value, yalid for the determination of x e <x1, x2>, is always inserted for a2.
Similarly we have

in + [(12 _fLo)2
+ k ( —

z(x)2]
<I(r p, Po)

in + - 2 + k ( !1 (3.20)a 2L\ a0 j \ a jj
if the a priori uncertainty is given by normally distributed results of preinformation
obtained by measurement. The upper limit of the interval (3.20) is always positive,
the lower may be zero or negative.

Since the mean error (5 may be positive or negative, the dependence of I(r, p, Po)
on the result of analysis can be represented by Fig. 2; for details see ref.7. This figure
also demonstrates the importance of analytical result precision. Results that are low
precise against the a posteriori assumption can have a zero or even negative informa-
tion content if they involve a higher bias; this may be true even if they lie within
the confidence interval for the chosen significance level (1 — cx). The effect of preci-
sion of results against the a priori assumption, e.g. w = (x2 — x1)/a, is discussed
in monograph11, p. 108.

When using the result of a single-component analysis, e.g. as information that
should serve as a basis for a decison, its relevance is given by the information gain
solely. Decisive then only is whether this gain is positive, i.e. it really contributes
information, or here I(r, p, Po) � 0. Classical information theory does not define
negative information, but in view of the pragmatic meaning of analytical result,
the case of I(r, p, Po) < 0 can be interpreted as a situation where incorrect results
misinform us37. To always obtain a positive information gain I(r, p' Po)' the relation

a < [(X2 — xl)/(\/2ltek)] exp [(1/2) z(cz)2] (3.21)

must be satisfied for the case of a uniform a priori distribution. For the conventional
(1 — cx) 0•95 level, when z(0.05) = F96, and for the most frequent case where
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Orei = 1OO(i/u) is highest for j = x1, the relation

OreI < (x2/x1 — 1) . 5.84/Jek (3.22)

must be satisfied, or (5 may be significant at a level corresponding to the critical value

z(c) < J{ln [(x2 — xi)2/(21teko2)]}

For the a priori normal distribution, the relation

or, quite generally,

z() < J[(ln (a/o2 + (/2 — /2)2/a2 + k(a2 —

(3.23)

(3.24)

z(cc) < \/21Ø (3.25)

must be satisfied; here I is I(r, p' Po) for (5 = 0. It is clear that for quantitative
determination of higher analyte contents, for z(OO5) = F96 the conditions (3.23)
through (3.25) are always fully satisfied. For trace analyses (Paragraph 3.2.), how-
ever, attaining a positive information gain may not be easy. For I F92 a case
can occur where the results represent information with zero content or they even

Dependence of information gain on the result of quantitative analysis. a Probability density for
a O5, 10 and 20. b I(r, p, p0) for the corresponding a; L1 and L2 are confidence interval limits
for(1 — ct)== 095
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misinform us; for details see ref.31. Fig. 2 for 4u = 2 demonstrates a case where the
result, which lies within the confidence interval, can have a negative information gain.

The extended divergence measure according to Eq. (1.14)can serve as a "warning"
model of results involving a bias, hence of a case that should never occur in practice.
Owing to the fact that it can also take negative values, I(r, p, Po) can also serve as
a characteristics for assessing to what extent the analytical results approach the
truth58'59, i.e. the actual, objectively existing analyte content of the sample. The
use of the divergence measure and the extended divergence measure facilitated the
assessment of the information properties of methods of "classical" (chemical)
analysis2 2, instrumental (physico-chemical) analysis19 ,26, methods of analytical
quality control23, etc. Their major importance, however, rests in their role of measures
for assessing the results and methods of multicomponent analysis, as will be shown
in Chapter 4.

In conclusion of this paragraph, summarize the main results and practical conse-
quences following for analytical practice from information and system-theoretical
considerations and quantifications:

1) The simplest characteristics of information properties of accurate results of
quantitative chemical analysis is the information gain I(p, po); according to Eqs
(3.3) and (3.10), this gain is determined by variance reduction, i.e. the a posteriori
to a priori distribution variance ratio. Although the problem is thereby simplified
considerably, this measure can be useful in practice.

2) The information gain of accurate results of quantitative analysis I(p, Po) is also
affected by how the result obtained, j, agrees with the value which is expected in
advance, based on theory for instance. For example, if the continuous rectangular
distribution U(x1, x2) is adopted as the a priori distribution, then the information
gain according to Eq. (3.3) for x1 + 3cr x2 — 3cr depends on w = (x2 —

x1)/cr
solely; for other u values it also depends, according to Eq. (3.4), on the difference
between j and x1 or x2. If the a priori distribution is normal, then the information
gain according to Eq. (3.14) depends on variance reduction and on the difference
between the mean values of the a priori distribution and the a posteriori distribu-
tion u.

3) Information gain expressed by Eq. (3.7) for the standard deviation estimate
depends on the number of parallel determinations n from which the standard devia-
tion was estimated, and on the number of parallel determinations a from which
the average, which is reported as the final result, is determined. Information gain
grows with increasing a and n values; this growth is rapid at low n values and
slow at high n values. From this it follows that performing too many parallel deter-
minations is of no practical value.

4) Information gain of results that can involve a oias, i.e. I(r, p, p0) according to
Eqs (3.8), (3.9), (3.15)—(3.17), depends on variance reduction and on the value of the
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mean error (5 or on its statistical significance. The dependences of I(r, p, Po) on
and on z(cc) = ö/o' for a priori rectangular and normal distributions are shown in
Fig. 1, demonstrating that the dependences for the two cases of a priori distribution
are similar.
5) The I(r, p. Po) value depends on the k = (o/cr)2 ratio, which characterizes the

reliability of the reference material (standard) employed for testing the method. If
we have cr (1/4) , k OO625 and its effect is negligible; at higher k values,
however, I(r, p, Po) decreases appreciably.
6) Information gain I(p, po) expressed in divergence measure terms is a model of

a case where it is assumed that (5= 0; information gain I(r, p, Po) expressed in
extended divergence measure terms is a model of a case where the occurrence of
a nonzero bias is admitted. A case can, however, occur where we prove experimentally
that the mean error (5 is zero; then, if k < 1, the information gain I(r, p, Po) is higher
than I(p, Po) for which this zero mean error is only assumed. The difference depends
on the k value which characterizes the "quality" of the standard used for testing the
accuracy of the results and can be as high as O5 natural units ("nits").
7) If the calibration dependence is homoskedastic and (5= const. for all analyte

constants e <x1, x2>, the information gain is independent of 1u, whereas if it is
heteroskedastic, i.e. (5 depends on 1u, the information gain changes with analyte
content, particularly for a nonzero mean error. In well-optimized methods, I(r, P' Po)
attains its maximum for z (1/2) (xi + x2), and it is high enough also for ji= x1
(i = 1,2).
8) Relevance of results of single-component analysis is primarily given by their

information gain. If the ratio w = (x2 — x1)/ci (for rectangular a priori distribution)
or o/i (for normal a priori distribution) is low, i.e. the results are little precise
against the a priori assumption and at the same time they involve a statistically
significant mean error, I(r, p, Po) can attain negative values. Then a situation occurs
where such poor results misinform us rather than provide us with relevant informa-
tion. It is, however, evident that accurate results, even not very precise ones, cannot
bring about a zero or even negative information gain55. This can be interpreted so
that accurate results converge (faster or more slowly according to how they reduce
uncertainty) to the "true" value; inaccurate results, however, converge (the faster
the more precise they are) to an incorrect value, not corresponding to the reality.
Therefore, all provisions referred to as good laboratory practice6, quality data
assurance7'8 or automated LIMS (Laboratory Information Management System),
are aimed at eliminating or at least reducing the hazard that such error occurs (see
also ref.36).
9) For results of quantitative analysis involving mean error statistically significant

at (1 — cx) level to always have a positive information gain, I (i.e. I(r, p, Po) for
= 0) must always be I <(1/2) z(cx)2 where z(cx) is the critical value of the normal

Collect. Czech. Chem. Commun. (Vol. 56) (1991)



Review 533

distribution at that significance level at which insignificance of the mean error 5
can be assured. For the conventional (1 — = O95 level we must have J < F92
nit, which is not hard to achieve in analysis of the majority component.

3.2. Trace Analysis

Trace analysis, qualitative or quantitative, has some specific features as compared
with the detection or determination of the majority components, and these feat-
ures have largely unfavourable consequences.
1) The a posteriori uncertainty is enhanced due to factors such as sample contamina-

tion by analyte, analyte losses by adsorption on the vessel walls, etc.; these pheno-
mena occur during analyses of higher contents too, they are, however, relatively so
low that they can be neglected. Some of the factors, contamination for example,
cannot be always described by a suitable mathematical model.
2) The a posteriori distribution largely cannot be regarded normal; it is distorted

due to the facts that the signal corresponding to analyte concentration cannot be
discerned from the background or the signal-to-noise ratio is low, the background
is not zero, etc. All these factors must be taken into account when choosing a suitable
a posteriori distribution.
3) The relative value of the standard deviation is usually high, the standard devia-

tion estimate inaccurate, and thus even a high mean error seems statistically insigni-
ficant. Sometimes it is even claimed that in trace analysis the term "bias" loses
meaning. We may or may not agree with this opinion; anyway, results of trace
analysis must be handled in a way different from that for results of determination
of higher contents, just because of the low relative precision associated with trace
analysis.
4) Sensitivity (of the method, of the detector, etc.) plays a major role. It is defined

by Eq. (1.3). In the determination of majority components its effect is by far not as
significant. Calibration alone is associated with a high increase in result uncertainty;
suitable reference materials (standards) are mostly lacking, and the matrix effect
if often high.
5) Unless the determination of trace analytes is selective, majority components

interfere with multicomponent trace analysis, their signals being considerably higher
than those of the analytes. Removal of the main portion of the matrix or preconcen-
tration of trace components are operations usually bringing about distortion of
the results.

The so-called detection limit is very important in all trace analysis considerations,
e.g. in ref.51. Kaiser6° defined it as the analyte concentration which corresponds
to the lowest signal yD discernible from the baseline or from the blank signal Yo as

YD = y + 3a(y0) (3.26)
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i.e. as the concentration

XD = YD/S x0 + 3o(x0), (3.27)

where S is sensitivity, x0 is analyte concentration corresponding to signal Yo and
c(x0) is the standard deviation of determination of concentration x0.

Two cases must be considered in trace analysis:

a) Analyte content is lower than the detection limit, j < XD, and signal is not
discernible from noise. According to papers10'11'18'48'61, the information gain then
is

I(p, Po) = in (x2/xD), (3.28)

where x2 is the maximum analyte content expected beforehand, x1 = 0, and XD is
the detection limit for the method used and analyte determined. In practice we
always have x2 < XD because we would not choose an analytical method that does
not enable us to determine the analyte which, as we know in advance, is present in
a concentration � X2

b) Analyte content /1a XD, signal is higher than noise, but the signal-to-noise
ratio is low and the signal intensity probability distribution is not symmetric. The
distribution of the results of trace analysis then cannot be considered symmetric
either. It can be described'1'6' by shifted lognormal distribution or by truncated
normal distribution.

The probability density of the lognormal distribution shifted to the detection limit
XD � 0 is

p(x)
X XD . (3.29)— XD) a /27t]1 exp {—(1/2) (x — XD) — 4u]2/c12]}

Putting /2 = In q .XD we have for the information gain of the result of trace analysis

I(p, Po) = in (X2/XD) [1/(aq J2ire)], (3.30)

and since the qa product is low for analyte content approaching XD, this gain is
invariably higher than that for case a) according to Eq. (3.28). The probability
density for normal distribution truncated in point ZD = (xD — ji)/a is

p(x) = X XD
(3.3!){[l - F(zD)] a \/27r} - exp { -(1/2) [(x -

and the information gain of results with this distribution is
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I(p, Po) = in
— + [) 1, (3.32)

[1 — F(zD)] J2ite 2 L' — F(ZD)J

where f(zD) and F(zD) are the values of the frequency and distribution functions
of normal distribution for ZD, respectively. Eq. (3.32) is a particular case of Eq.
(3.4) for z1 ZD and for z2 so high that F(z2) 1 and f(z2) 0. It is clear that as
the analyte content increases, the qx product in Eq. (3.30) approaches unity and in
Eq. (3.32), when f(zD) as well as F(zD) are very low for ZD —3, these relations
transform into

I(p, Po) in [x2/(a J2ite)] , (3.33)

i.e. into the information gain for normal distribution according to Eq. (3.3) for
xl = 0.

In trace analysis, the o value depends considerably on the sensitivity and on the
way calibration is performed. This will be dealt with in Chapter 5. Here we de-
monstrate another effect of sensitivity: relations (3.28), (3.30), (3.32) and (3.33) are
only meaningful provided that the sensitivity is such that X2 Ymax/A otherwise
at the maximum measurable signal Ymax the analyte content x2 cannot be determined
since the signal is beyond scale. If the sensitivity is too low, i.e. S 4 YmaX/X2, the ti
value, e.g. in Eq. (3.33), at a standard deviation of signal measurement o is unneces-
sarily high. For details see refs9'19'37.

The limit of determination is important in quantitative trace analysis. It is defined as

XQ = x0 + wcr(x), (3.34)

which is analogous to the definition of the detection limit according Eq. (3.27), the
standard deviation of determination a(x) being used. The choice Of the w value,
however, is not unique. Usually, w = 10, which according to Currie62 is associated
with the fact that at this value, the precision of results of analyte determination at
a concentration x0 is given by the relative standard deviation value of 100.

(aijia) = 10%, which can be regarded acceptable. Currie's definition led to under-
standing the limit of determination as the lowest result that can be determined :at
a sufficient precision. Liteanu and Rica51 use other precision characteristics as well,
e.g. the entropy to express the minimum tolerable reliability; these authors too,
however, fail to regard the accuracy of the reult. In his monograph63, Bayermann
defines the limit of determination as the lowest result that is precise and accurate
enough to be regarded as a satisfactory estimate of the true analyte content. A posi-
tive information gain value can be adopted as a condition of a sufficiently precise
and accurate result. The information gain is zero if (x2 — x1)/r = (2ire)"2 exp.

[(1/2) z(cc)2], where z(x) is the critical value of the normal distribution for the
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level at which the mean error is statistically significant. The determination of
the analyte concentration ha < X2, ha e <x0, x3>, x3 x2, then invariably has
a positive information gain, so that putting x1 =x0 we have for the lower limit of
nonzero information content

x1 = x2 = x0 + o2're)"2 exp [(1/2) z(cs)2] = x0 + A(x) cr, (3.35)

which is an analogy of the definition of the limit of determination according to Eq.
(3.34) for w = 4x). In practice, however, particularly during the determination
of very low contents, it is difficult to decide whether the mean error is really a bias.
Therefore, it has been suggested in ref.3' that the w value be determined according
to the scheme

0�z(oc)<133 . (3.36)
LA(x) = 4.l33exp[(1/2)z(cx)2] F33 z(cx) 196

The case z(cx) < 196 should never occur in practice because it implies that the results
involve an error statistically significant at a level (1 — cx) 095; such error should

always be eliminated or at least reduced by modifying the working or calibration
procedure or the like. The A(cx) values are tabulated in ref.31.

The detection limit XD and the nonzero information content limit x1 enable us to
distinguish between three regions of trace concentrations JLa, viz.

1) ha < xD; the presence of analyte cannot be proved by the analytical method
in question because the corresponding analytical signal has not appeared. We only
know that Ia can lie within the limits 0 1u <XD, the information content of this

being given by Eq. (3.28).

2) XD <x1; the presence of analyte can be proved by the analytical method
in question, quantitative determination, however, cannot be carried out without
the hazard that the result may have a zero information gain.
3) p x1; the analyte can be determined, and if the results do not involve an error

statistically significant at a level (1 — cx) <095, they invariably have a positive
information gain, which can be expressed by Eq. (3.33).

For example, in trace analysis using a method whose detection limit is XD = 4.
iO% and performed at a standard deviation o = 2. 10 5%, and expecting

beforehand no more than x2 = iO% analyte, the information gain is i(p,p) =
= in (10/4. 10) = 092 natural units for Ua <XD, I(p, Po) =in (10/25.
i0 J2ire) = 227 natural units for ha XD, and I(p, Po) = in (10-/25. i0.
\/2lre) + (1/2) (—05 . 03521/0.3085) — in 03085 = 316 natural units for ha =

= 4125%, at which z = —0•5.
It will be clear that for different methods of determination of a certain analyte

in different materials, or for different procedures, calibrations or instrument sensitivi-
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ties the XD and x1 values will be different. In this case — as Currie demonstrated —
the "a priori", i.e. mean or limiting, value of some metrological characteristics valid
for the given analytical method has to be distinguished from its "a posteriori", true,
actual value for the given procedure (including the sampling, sample handling,
calibration, result calculation, etc.) of detection or determination of a given analyte
in the sample of a given matrix. The a priori values of characteristics play a role,
e.g., in the choice of the optimum method9; the a posteriori, actual values supple-
ment the analytical result and are of importance in procedure optimization9, quality
data assurayice7'8 and in all cases where attaining really relevant analytical informa-
tion is a matter of importance7'36'39.

All conclusions drawn for identification, qualitative or quantitative analysis apply
to trace analysis as well; in addition, however, the following circumstances — largely
unfavourable — play a role too:
1) Information gained by trace analysis can answer the question "what", if this is

identification analysis performed near the detection limit of the method employed;
otherwise it answers — with a higher or lower uncertainty — the question of "how
much" analyte is present.

2) Information content of results of identification of analyte present in an amount
approaching the detection limit can be expressed by using entropy for the condi-
tional probability according to Eq. (2.3) or (2.8) or, if several analytes are identified
simultaneously, by using equivocation according to Eq. (2.9).
3) Information gain of results of trace analyses must be expressed for various

continuous probability distributions, basically according to the relation between
the true analyte content Pa and metrological characteristics of the method such as
its detection limit XD and limit of determination XQ or the nonzero information gain
limit x1. Only three cases can occur:

a) Pa <XD; analytical signal cannot be discerned from background noise, the
probability distribution of the results is uniform and the information content is
given by Eq. (3.28). This result only informs us that analyte can be present at any
concentration from zero up to the detection limit.

b) XD Pa < XQ or x1; analytical signal appears, the signal-to-noise ratio, however,
is low, and the shifted lognormal or truncated normal distribution must be considered.
Information content is given by Eq. (3.30) or (3.32). Although quantitative determina-
tion is possible, the result is so uncertain that the information gain may be zero even
at a low mean error. A result from this region thus must be only regarded as a semi-
quantitative estimate of the true analyte content.

c) Pa > x1; the result distribution can be regarded normal, informatiol1 content is
given by Eq. (3.33), and information gain is positive unless the results involve a mean
error statistically significant at a (1 — cx) level for which z(c.) > In [(x2 — x1)2/2/2
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4) Metrological backup of calibration and quality data assurance procedures is
more difficult in trace analysis than in majority component analysis; it is largely
necessary to subtract the blank, whose value can be variable, and contamination
or analyte losses can hardly be forecast even in a "pure" laboratory. Relative
standard deviation of results is usually high, and only high mean errors (5 can be dis-
closed as significant by statistical testing. Thus, there is a point in the opinion that
the notion of bias loses sense in trace analysis.
5) Sensitivity, of the instrument detector for instance, plays a more important part

• here than in qualitative or quantitative analysis of higher contents.
6) In view of what has been said in 1) through 3), the sharp difference between

qualitative and quantitative analysis vanishes within the analyte content region of
/2a E <0, x1>. Results of trace analysis frequently do not enable us more than to give
(rather wide) limits within which the true analyte content lies; so they are rather
semiquantitative.
7) Since the relative precision of results of trace analysis is usually low, it is appro-

priate to carry out more parallel determinations than for majority components.
Also quality data assurance in routine trace analysis must be more stringent than
in routine analyses of higher analyte contents.

4. MULTICOMPONENT ANALYSIS

The amount of information obtained by multicomponent analysis can be regarded
as a sum of information contents of the individual determinations according to
Eq. (1.15) but it must be borne in mind that this relation holds true exactly for
independent results only, which, however, is not the case with multicomponent
qualitative, identification or quantitative chemical analysis. If nothing else, the
results often are all based on the same batch taken, the measurement is preceded by
the same sampling and decomposition, sample handling, etc.. which makes the
occurrence of a "common" bias possible. Thus, the true amount of information is
largely lower than according to Eq. (1.15), particularly if the a posteriori uncertainty
of the individual results is increased by imperfect selectivity. However, it is always
possible to determine the "total", i.e. maximum, potential information content of
the whole sequence of signals (spectrum, chromatogram, polarogram, etc.) in multi-
component analysis as10'38

M [(Zmax — Zmin)IAZ] ln [(yrnax — ymin)/(°y ,/2ite)] , (4.1)

where Zmjfl, Zmax, Ymin and Ymax are the lowest and highest, respectively, values of posi-
tion z and intensity y recorded by the instrument, and Az is the smallest distance
between adjacent signals at which the signals do not affect one another. These di-
stances are different for different signal shapes (profiles)3'9'10'33.
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The application of information theory is more important in multicomponent
analysis33'38 than in single-component analysis because in addition to accuracy and
precision, it enables the selectivity, relevance of results, redundancy of the procedure,
effect of the signal processing method, etc., to be included in the analytical method
assessment and in optimization criteria64.

Information gain attained by component separation (e.g. in chromatography,
electrophoresis, etc.) or by signal resolution (e.g. on a prism or grating in emission
spectrography) — irrespective of whether identification, qualitative or quantitative
analysis i concerned — can be determined for i = 1, 2, ..., n components A1,
signals y(z) being measured in positions j = 1, 2, ..., k, as

i, = log n + a1 log a1, j = const. (4.2)

This quantity always lies within the interval I, e <0, log n>; the maximum value

is attained if — a1 log a1 = 0 when perfect separation is achieved, whereas

= 0 if — log = log n, i.e. no separation or signal resolution for the

components is achieved. We insert into Eq. (4.2)

a.j = P(A1J z), j const.: qualitative analysis
(4.3)

SIJ/>SIJ, j = const.: quantitative analysis.

If a component A. cannot be detected or determined by means of signal in position
z, than ajj = 0 and we put a1 log a. = 0. If the signal intensities are measured in k
positions j = 1, 2, ..., k (k � n), the amount of information obtained by the separa-
tion is

Msep = k log n + a1 log ajj. (4.4)j=1 i=1

If each analyte is detected or determined by measuring a single signal, we have k =n
and

Msep = n log n + a1 log ajj. (4.5)
j=1 i=1

The average information gain per component, attained during the separation of n
components, is

'Sep = (1/n) Msep = log n + (1/n) ajj log ajj (4.6)j1 i=1
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so that invariably 0 'sep log n. For perfectly separated signals we have 'sep =
= log n, whereas for no separation, 'Sep = 0. Further details can be found in ref.33.

4.1. Selectivity

Selectivity, a property of fundamental importance in muticomponent analysis, was
first defined by Kaiser65; to date, eight different definitions exist66 but none of them
is quite universal. It has been demonstrated33 that selectivity must be regarded as
a continuous property; the differentiation between "satisfactory" and "unsatis-
factory" selectivities3 is acceptable from practical aspects only. Rather, it is appro-
priate to differentiate between cases where selectivity is good enough not to affect
the accuracy of results and cases where nonselectivity is so pronounced that signal
overlap must be taken into account during results handling.

Consistent with the requirement of universal applicability of selectivity is the quanti-
fication based on a quantity analogous to entropy. For signal measurement in posi-
tion z, this quantity is

H(a) = —ajj log ajj = 1, j = const., (4.7)

where a1j is determined according to Eq. (4.3), hence, it need not be a probability.
For the entire analytical procedure,

H(a) = — a log (4.8)j=1 i=1

The value of this quantity, which is zero for a perfectly selective procedure, is governed
by the matrix which is the matrix of conditional probabilities or normalized
partial sensitivities, where 0 a1 1. For n = k this matrix is a square one, and
if it is a unit diagonal matrix (a = 1, a1 = 0 for j i) which is the case when the
procedure is pefectly selective (Fig. 3a), we have H(a1) 0; otherwise, 0 < H(a1)

k log n (Fig. 3b), or 0 <H(a1) k log n (Fig. 3c). It is clear that improvement
of the resolving power of the instrument, better resolution of the signals, "auto-
focusation", etc., bring about decrease in the result uncertainty and thus increase
in the amount of information obatined by a multicomponent analysis. For =
= P(A) z), Eqs (4.7) and (4.8) express Shannon's entropy for conditional probabili-
ties; for a1 = it is more appropriate to regard the quantities (4.7) and (4.8)
as an analogy of entropy, because in the original Boltzmann's concept the thermo-
dynamic entropy and in Shannon's concept the information entropy are defined
in probability terms.

For nonselective procedures it is necessary to proóess a sequence of analytical
signals (spectrum, chromatogram) making allowance for the signal overlap, i.e., to
"separate" the interfering signals by calculation, whereupon the standard deviation
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a3,, which is relevant from the information content point of view, increases, and so
does the a posteriori uncertainty of the individual determinations.

The selectivity quantification according to Eq. (4.8) is universal for qualitative,
identification and quantitative analysis and is also applicable to quantitative analysis
when overdetermined systems of equations are solved, i.e. kequations of the form

= YSdXI in n unknowns, k> n, using the least squares condition

— = mm; ( = (1/k)x1, I =const., j==1,2,...,k).

1- -I
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FIG. 3
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Such systems of equations are now solved by using computers; the precision of deter-
mination of the individual components can be obtained as well.

Eqs (4.1), (4.4) and (4.5) for the amount of information obtained by multicom-
ponent analysis, and the characteristics of selectivity, i.e. entropy according to Eq.
(4.8), are suitable for results obtained simultaneously using a single-channel instru-
ment. Results obtained by means of multichannel instruments would apparently call
for a different system and information theoretical approach.

4.2. Relevance and Redundancy

Any information — including that obtained by multicomponent analysis — has its
pragmatic aspect and its content. These two properties, which are not entirely
independent, are of importance in assessing the relevance of results in solving a cer-
tain analytical problem. In multicomponent analysis, the kind and number of com-
ponents that can be determined simultaneously are given by the analytical method;
information thus obtained can have different relevance in solving different analytical
problems. Therefore, the so-called amount of exploitable information is sometimes
used11'39, defined as

ME = Ik1, (4.9)

where the coefficient of relevance of information about component A, in solving
a given problem is k e (0, 1>. If more than one method must be employed to obtain
the required information (j = 1, 2, ..., m where m> 1), the amount of information
obtained by a parallel combination of methods1° is given by

ME = E (4.10)
i—i j=1

where I is information gain attained in the j-th method and concerning the i-th
analyte, and k1 = <0, 1> is the corresponding relevance coefficient. It is clear that
we invariably have 0 < ME � M, irrespective of whether the results have been
obtained by a single method of multicomponent analysis or by several methods of
single-component or multicomponent analysis. Details concerning the amount of
information deduced from a combination of several methods are given in mono-
graph10, Paragraph 6.9., where series (successive) and parallel (simultaneous) com-
binations of analytical methods are differentiated.

The relevance coefficient for i-th analyte can be regarded either as constant, i.e.
the static model is treated, or as variable with information content of the result, i.e.
the dynamic model is introduced, where

dk/dI = j'(k,). (4.11)
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Two types of dynamic model have found practical application, viz.

a) k. (1< 'N)
(4.12)

L ki,max{l — exp [— a(I 1N)]} (I 'N)

This model (see Fig. 4a) can be used if information is only relevant in case that its
content I is equal to or higher than the required information content 'N' Relation
(4.12) for a <0 is the solution of the equation dk1/d11 = ak + b; b> 0.

b) k. = ki,max{1 + exp [—a(I — I1/2)]} . (4.13)

This model (see Fig. 4b) suits well if we require that ',mi ui,max; '1/2 (1/2)
(Ii,min + i,,max). At '1/2 we have k1 (1/2) ki,max. Relation (4.13) is the solution

of the differential equation dk/dI1 = k(a — bk) for 0 < a b. Equation (4.13)
jS sometimes referred to as Robertson's growth law.

The static model is actually a particular case of the dynamic model for dk1/dI, = 0,
or I >> 'N in Eq. (4.12) or I 'max in Eq. (4.13). When using the static model, the k1
values must be determined in advance for all analytes A1, i = 1, 2, ..., n; this also
applies to the kjmax values in the dynamic model. A possible choice38'39 is k = 1

for highly relevant analyte, k 0.75 for relevant analyte, k = 0.5 for low-relevant
analyte, and k = O'25 for potentially relevant analyte.

It is convenient to consider the relevance coefficient to be a value of the function
of membership of information on the i-th analyte A. in the fuzzy subset66 of informa-

'112

FIG.4
Dynamic models for relevance coefficient. a Model according to Eq. (4.12), 'N =2, a = 1; b

model according to Eq. (4.13), '1/2 = 6, a == 8
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tion relevant to the solution of the given problem. This enables us to address the
case of mutually dependent pieces of information; for instance, for two equally
relevant but factually entirely independent pieces of information with contents of
'1 and '2 we have

ME = 11k1 + 12k2 = kI1, (4.14)

where k = k1 = k2. If, however, information on one component involves some
information on another component, Eq. (4.14) holds true but k = k2. Con-
vérsely, if information on component A1 on its own and information on component
A2 on its own do not make decision possible but rather rich information on A1
and A2 contributes to correct decision, then k k1 = k2. Irrelevance of result
of determination of a component X, can occur either if the information content is
lower than as required for the decision or at k1 = 0. The case I(r, p, Po) 0, how-
ever, can also occur during the use of the static or any dynamic model if condition
(3.25) is satisfied.

If a component can be determined by more methods j= 1, 2, ..., m, we choose
that method for which I, is highest. When we want to determine some analyte X1
by more, e.g. two, different methods and the difference between the results ij'
j = 1, 2, is not statistically significant e.g. at the (1 — c) = 095 level, we speak
about convergence of results of different methods. If the chemical or physico-
-chemical basis of the two methods is different, such convergence brings valuable
evidence of likelihood of the results. In practice, convergence of results of different
methods is sought in interlaboratory assays36.

Another important property of experimentally acquired information is its redun-
dancy, which for results of single-component analysis can be defined as

1 (Imax
—

1IImax (4.15)

and for results of multicomponent analysis as

1 — M/Mmax (Mmax — M)/Mma,( Mi/Mmax, (4.16)

where I, M are the actually attained, 'max' Mmax the maximum attainable and I,
M1 the lost or "excessively" acquired information gain or amount of information,
respectively. We can also write I = rlmax (r E <0, 1>). When a series of parallel
determinations are carried out, redundancy can be, according to refst02'67, ex-
pressed by inserting in Eq. (4.15) as

r = (n11 — I)/ni1 , (4.17)
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where I is information gain attained by carrying out i (i = 1 or n, n 2) parallel
determinations. The n11, Ii,, I and r values for various numbers of parallel determina-
tions, a = 01 and x2 — x1 = 100 are given in Table V. It is clear that for n 2,
lost information I < I whereas for n 3, I > I and r> 0'5: for three or more
parallel determination, more redundant than useful information is generated. But
even in a single determination, some redundancy is involved because control analysis
of standard must be inserted always after k analyses6'8'9'73; then

r = [(Ic + 1)I — k11]/(k + 1)I . (4.78)

For instance, for k = 1 we have r = 0500, for k = 2 we have r = 0'333, and for
k = 10 redundancy is as low as r = 0'091. In short, the existence of a posteriori
uncertainty does not allow us to acquire reliable information free from some red-
undancy; e.g., it protects the results against gross errors or bias5 provided that
provisions are made such as good laboratory practice and quality data assurance36.
Subjective confidence in results is also higher if they are fairly precise even if some
redundancy is involved.

In the case of multicomponent analysis, we can substitute in Eq. (4.76) for Mmax =
= Vfp according to Eq. (4.1) and M according to Eq. (1.15):

= 1 — M/M (M — M)/M = (C — M)/C, (4.19)

where C is the "capacity" of the analytical system in which the multicomponent
analysis occurs. This capacity can be defined in a manner similar to that in which
Peters (ref.44, p. 179) defined the capacity of a communication channel, i.e. as the
maximum amount of information the analytical system can provide simultaneously.
If the information gain 'N or amount of information MN necessary for the given

TABLE V

Values of n11, I and I in natural units and redundancies rfor various n values

n nI In 1 r

1 79 792 0'OO 0000
2 1584 &42 742 0'468
3 2376 871 1505 0633
4 3168 892 2276 0718
6 4752 92l 3&31 0806

10 792O 958 6962 0879
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problem to be solved is known (see also Eq. (4.12)), then the redundancy39 is

r = 5(1 1N)/ = (M — MN)/M > 'N' M> MN
( 20)

10 i

But then, for I <IN or M < MN the relevance of results for the given problem is
poor; therefore, both the relevance and redundancy of the results should always
be considered39. If the redundancy, written, for instance, as

= (M — ME)/M = 1 — ME/M (4.21)

is too high (M ME), the potential of the method in multicomponent analysis is
apparently made use of in an ineffective and mostly also uneconomical manner.

Redundant is also experimentally acquired information that actually could be
obtained by deduction (calculation for instance) from the theory or could be retrieved
from the literature.

The economic point of view is also important in practical routine acquisition of
information on the chemical composition. Therefore, we use the concept9'11'69 71
of so-called information profitability

P (1/i) M (4.22)
or information-time profitability

= (e/t) M (4.23)

or exploitable information profitability

= (c/) ME, (4.24)

where -r is costs that must be spent on the analysis and e is the coefficient of time
effectiveness of the analysis which requires time t; this coefficient can be expressed,
e.g., as

11 tto—t1
1 — [(t — t0 + t1)/t1] t0 — t1 < t < t0 (4.25)

10 t> t0,

where t0 is time in which we want to know the result and t1 is time required for the
interpretation of the results. The c values according to Eq. (4.25) are shown in Fig. 5,
which also demonstrates the effect of exponent n.

Illustrative for the practice is the shape of the dependence of P11 on , the dynamic
model for k being used according to Eq. (4.12) (Fig. 6). While information gain
acquired for the costs spent increases monotonically with increasing (Fig. 6a),
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Dependence of information gain (I) and information profitability (RE) on costs 'r =ur1
—

where is minimal costs necessary for performing the analysis. a Dependence of I(r, p, p0) on .
Curves: 1 I(r, p, p0)1, Q.2 (x2 — x1) = 200; 2 I(r, p, P0)2, 2 (x2 — x1) =
= 100. b Dependence of IL = (1 /t) { 1 + exp [— l2(T — 4)]} . I(r,p, Po)i; 2 E = (1 /r).
{i + exp [..( — 5)]} 1 1(r, p, PO)2. I is the irrelevance region, II is the redundancy region,

the optimum region is hatched
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the dependence of E on t (Fig. 6b) exhibits a maximum. If insufficient means are
available for solving a given problem, then the results are not very relevant (region I
in Fig. 6b), whereas excessive costs result usually in a high redundancy and lowering
of P (region II in Fig. 6b). The region of optimum exploitation of costs is shown
by hatching in Fig. 6b; it exhibits the maximum information profitableness for the
given dependence of o on r.

The application of information theory is most important in multicomponent
analysis. Although some problems have attracted attention3'9 11,19,38,6971, other

Ct
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problems of multicomponent analysis remain to be solved from the system theory
and information theory points of view. These include the problem of suitable ex-
pression of the amount of information of dependent results and of results gained
during the use of multichannel instruments.

In conclusion we sum up the main results following from the system and informa-
tion theoretical considerations of multicomponent analysis, which are of significance
in routine practice:
1) When considering the suitability of a method of multicomponent analysis for

addressing a given analytical problem, the total amount of information is insuffi-
cient; the relevance of the results of determination of the individual analytes must
also be taken into account. The exploitable amount of information is therefore intro-

duced (Eqs (4.9), (4.10))and information profitability is derived from it (Eq. (4.24)).

2) In addition to relevance, the redundancy of results of multicomponent analysis
is an important criterion as well. Redundancy according to Eq. (4.19)shows to what
degree the potential amount of information obtainable by the given method for the
particular case is exploited, and redundancy according to Eq. (4.21) characterizes
the excessiveness of the total acquired amount of information with respect to the
amount of useful information. If the amount of information required for solving
a particular problem is known, redundancy can be expressed by Eq. (4.20). Unless
excessively high, redundancy is useful, and some redundancy is even necessary.
3) Information theory enables us to quantify the most important property of a multi-

component analysis method, viz, selectivity, by means of quantity (4.8), which is
either entropy or its analogy defined without the use of probability. Selectivity is
a "continuous" property, as characterized by Eqs (4.7) and (4.8), because it takes
values 0 � H(a) � log n, or 0 � H(a13) = k log n, i = 1, 2, ..., n; j = 1, 2, ..., k;
k> n.

4) Amount of information obtained by separation, Msep (Eq. (4.4)), or the average
information gain 'Sep (Eq. (4.6)) depends on the number of components separated, n,
and on how the signals corresponding to the individual components are resolved.
This applies to quantitative and identification multicomponent analysis, to all
signal shapes and to signals from completely unresolved ones (e.g. in field flow
fractionation) to perfectly resolved spectral lines. We invariably have 0 Msep

log n, or 0 'Sep log n, zero corresponding to no separation and the maximum
corresponding to perfect separation. The relation between the signal and the jjajll
matrix is illustrated in Fig. 3.
5) Those result properties that have been discussed in Chapter 2 for single-com-

ponent identification analysis have a similar meaning in multicomponent analysis
as well.
6) Result precision and accuracy in multicomponent analysis have an effect on the

acquired amount of information analogous to that in single-component analysis;
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this applies to the determination of higher analyte contents (Paragraph 3.1.) as well
as to multicomponent trace analysis (Paragraph 3.2.).

7) The logarithm base used, e.g., in Eqs (4.1), (4.2) and (4.4) through (4.8) deter-
mines the units in which the information gain or amount is obtained, the conclusions
following from the information theoretical considerations, however, are unaffected
by it. Therefore, we often choose natural logarithms because in this manner the
simplest relations are obtained for the a posteriori normal, truncated normal and
lognormal distributions of results of analysis.

8) The application of information theory and the system approach to problems
of multicomponent analysis are of higher importance than in the case of single-
-component analysis, they require, however, some special approaches that were
unnecessary in single-component analysis. These include, in particular, problems
of relevance and redundancy of the results, combinations of methods, selectivity
problems, etc. Some of them have not yet been solved, e.g. the amount of information
gained from results that are mutually dependent or that were obtained by using
a multichannel instruments, etc.

5. TRANSFORMATION OF SIGNAL INTO ANALYTICAL INFORMATION

Analysis as a process of acquiring information on the qualitative or quantitative
chemical composition of sample proceeds so that signal is first formed and this is
subsequently decoded into information (Paragraph 1.1.). Signal transformation
into information must meet two requirements:

1) All the information included in the analytical signal and relevant to the problem
addressed, which is the correct answer to the question asked (Paragraph 1.2.), must
be obtained. Various pieces of information can be extracted from the signal, e.g.,
concerning the kind of some components, the kind and amount of all components,
of amounts of selected analytes, etc. This is given basically by if we decode the posi-
tions of signals z, their intensities in various positions y(z), etc. A formal mathe-
matical description of the process of decoding for qualitative, identification or
quantitative analysis is given in monograph11 and in ref.72.

2) The required information on chemical composition must involve a posteriori
uncertainty as low as possible, i.e., it must represent the maximum information gain.
Consideration based on information theory and system theory concepts can be
useful in seeking for ways to achieve this goal. The following paragraph is devoted
to this.

The relation between the analytical signal set and the required information set
can be regarded as a binary relation. If the analytical function is a binary relation
of the carrying set of signal positions or intensities into the set of analytical informa-
tion, the calibration function is a relation which is inverse to it. The set of signal
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positions and analyte identities contains a finite number of elements, and the set of
signal intensities in given positions and of analyte contents is given by values conti-
nuous on a finite interval <Ymin, Ymax> or <x1, x2>. The quantities z, y, and y(zj),
which are determined by measurement, and the quantity x, which is determined
from the y or y(z) value, must be regarded as random quantities with continuous
probability distributions. For instance, the distribution of z is p(z), whose mean
value is

$:t zp(z)dz

which can take either discrete values only (e.g. in emission spectrography) or conti-
nuous values over the ZE <Zmin, Zmax> region. Similarly, y and y(z) have distribu-
tions p(y) or p(y(z)) whose mean values

= $yp(y)dy
and

'+o ( \ ( ( \\A I
/4(z) J VZJ) PYkZJ)) uyZ

attain continuous values over the intervals <Ymin' Ymax> and <y(Zj)mjn, Y(Zj)maz>,

respectively.
It is obvious that information on the analyte identity or content must be involved

in the signal position or intensity, respectively. Therefore, Mrs Frank and co-
workers72 describe the perfectness of transformation of information on the signal
into information on the chemical composition in terms of the so-called transinforma-
tion. This measure of mutual information characterizes, for instance, what informa-
tion on the identity of analyte A. is contained in the signal in position z; it is given
as

T(A, z) = P(AI, z) log {P(AJ, z)/[P(A1) PA(zJ)]} . (5.1)

Similarly, information on x contained in y is characterized by transinformation for
continuous conjugate distributions,

T(x, y) = M p(x, y) log {p(x, y)/[p(x) p(y)]} dx dy. (5.2)

In these equations, P(A, z) is the joint probability and p(x, y) the joint probability
density and P(Aj, PA(zJ) are marginal probabilities and p(x), p(x) are marginal
probability densities. The transformation is a symmetric quantity, i.e., for instance
T(x, y) = T(y, x), and for two identical random quantities it is the entropy, hence
T(x, x) H(p(x)). It is zero if the two quantities are not mutually correlated and
neither of them contains information on the other one, and it attains its maximum
value if a functional dependence exists between the two quantities. It has been de-
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monstrated" that transinformation is a particular case of divergence measure;
some additional details can be found in ref.44. To a first approximation, the tightness
of interdependence between y (or y(z)) and x can be characterized by the correlation
coefficient, which is commonplace in analytical chemistry5'9"1.

It is appropriate to terminologicaily and mathematically differentiate between
the amount of information contained in the signal and in the final analytical result.
Therefore, the notion of the information content is introduced, and we have

= ln [(Zmax — zmin)/(az \/2lte)] (5.3)

for the signal position, and

— J ln [(Ymax — ymjn)/(G J2ite) (one-component analysis)
(5 4)ln {[Y(Zj)ma — Y(Zj)mjfl]/[Oy(z) ,/2ite]} (multicomponent analysis)

for the signal intensity. As to the final result, its information gain is considered,
and this is expressed by means of Eqs (3.71) or (3.14) as in refs32'34'35

= In [(xi — x2)/(cr J27rek)] — (1/2) ((5/a)2

= (1/2) {—ln R + ln [12/(2ltek)] — z()2} , (5.5)

where the variance reduction R (a/a0)2; the remaining symbols are as in Para-
graph 3.1., and in [12/(2icek)] = in (191/ek). In muiticomponent analysis, its in-
formation contribution is characterized by means of the amount of information, i.e.,
of the sum of information gains of the individual results.

It is clear that a dependence, determined by the signal decoding procedure, must
exist between the information content of the signal (Eq. (5.4)) and the information
gain (Eq. (5.5)). This dependence, however, is by no means simple. For instance, a
is related with a3, and their interrelation is basically only determined by how informa-
tion on y is transformed into information on x; the (5 and k values in Eq. (5.5), how-
ever, are related with no quantity from Eq. (5.4), and the <x1, x2> interval width
is very loosely related with the <ym' Ymax> interval width, this relation, moreover,
depending on sensitivity S according to Eq. (1.2) or (1.3).

In practical calibration, the most suitable model, i.e. the calibration dependence
form f according to Eq. (1.1), must be first chosen. Frequently, the linear depen-
dence y a0 + a1x is the dependence of choice; it also corresponds to many
physical rules underlying the analytical practice, such as the Lambert—Beer law,
Ilkovi's equation, etc. Occasionally, linear segments of generally nonlinear de-
pendences are employed. In chemical ("classical") analysis, where y = bx (b =
= const. is the stoichiometric equivalent), the dependence between the standard
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deviation of the result a and that of the signal measurement a,,,is given as

a = cry/b. (5.6)

In instrumental analysis, the relation between a and a). is dependent on the calibra-
tion conditions even if the dependence of x on y is linear (but is found by calibration),
and it can be generally written as

a = (ar/b) A. (5.7)

For several cases the relation between a and a is given in Table VI. Additional
details are given in refs9'10'34'37'40'41. In the standard additions method, the mutual
correlation of the signals plays a role as well; this is characterized by the correlation
coefficient , which lies within the interval of (—1, 1>, and no correlation exists
between the signals at = 0. For alternative descriptions of the dependence of a
on a in the standard additions method see refs9 11,37

If the calibration dependence is nonlinear, linearization is achieved by computa-
tion transformation or polynomial regression is introduced in the form y a0 +

+ a1x + a2x2 + ... + ax =>a1x1, making effort to achieve a good fit with

TABLE VI

Dependences of a on a for various alternatives of signal intensity (y) conversion into analyte
content (x)

Calibration
dependence

Dependence of a on

y = bx stoichiometric a (crfb) J1/n
dependence
b const.

y = fix calibration a = (ar/b) ..,/[(1/n) + (1/rn) + (crb/baY)2 y2]
straight line

13

standard a = (cry/b) ((q + l)/q] J[2(1 —
addition'

y = + fix calibration a = (cr/b) .J[(l/n) + (1/rn) + (ab/baY)2 f; —
straight line
a— a;b= /3

a q xS/xA, where XS is the standard addition concentration and XA is the analyte concentration
in sample, Q is the correlation coefficient.
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the smallest possible number of coefficients a1. The problem of an approximately
linear calibration has been dealt with by Kragten and coworkers73. Additional details
concerning suitable calibration models are given, e.g., in monographs5'9'68'74 and
in the paper41. Expressing the dependence of o. on a, is always useful because it
demonstrates in which conditions the maximum information profitableness, ap-
propriate redundancy, etc., can be reached.

The a posteriori uncertainty of the analytical result is dependent not only on a
but also on the mean error (5, or on its statistical significance which is given by the
ratio z ((5/a). If the mean error cannot be determined from the theory5'57, only
the d = (x ) value can be found by analysis of a RM and assumed to be the
same in the analysis proper. Since the X value is only known with a precision charac-
terized by ar, the exponent k = (ar/a)2 appears in Eq. (5.5). As long as ar (1/4) a,
the effect of k on the information gain of the analytical result is negligible; if k in-
creases, the information gain drops appreciably32.

The accomplishment and metrological assurance of suitable calibration is rather
difficult, particularly if the dependence of y on x is heteroskedastic32 or if results
of trace analysis are evaluated51'61. Usually, no more can be assured by calibration
than that the standard deviation of the results is (according ref.9) a ay. and that
the mean error is statistically insignificant at a level (1 —) O95. Then we know
no more about the information gain than that it lies within the interval (3.19) or
(3.20), and by adhering to the conditions (3.21) through (3.25) which can be
achieved by using adequate calibration — we can ensure that information gain
I(r, p' Po) is positive also at the lower limits of the above intervals, so that the results
of analysis are associated with true information contributions.

The effect of sensitivity on the information gain is not straightforward. Sensitivity
S = 1/b affects the dependence of a on a on the one hand and the interrelation
between (x2 x1) and (Vmax — Ymin) on the other hand. The x1, x2 values are given
by our a priori assumption concerning the analyte content, whereas Ymin' Yrna are
instrumental parameters. It is not always possible to adjust the instrument so that

(1/S) J'max; very often, either a part of the signal intensity region remains un-
used — largely that part in which the measurement is relatively most precise — or the
analyte content cannot be determined either near x1 (insufficient sensitivity) or near
x2 (too high sensitivity). In either case the maximum information gain attainable
for the given information content of the signal is not reached. In multicomponent
analysis, nearly always a compromise sensitivity must be sought so that the highest
possible amount of information be gained while keeping the redundancy reasonably
low.

Analytical result obtained by signal processing represents information on the
composition of sample, whereas chemometric handling of the results provides
information on the composition and its spatial distribution and/or time changes
within that part of material reality from which the samples are taken. It is obvious
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that such treatment of a set of results brings about some — in some cases rather
significant — information contribution given by the reduction of the variety. This
can be expressed by Eq. (2.1), to a first approximation at least. An overview of
methods of handling such sets can be found e.g. in ref.41; among the most important
methods is the pattern recognition method. Information gain attained by performing
classification by this method is discussed in Paragraph 6.15 of monograph'°. In
addition to "information compression" achieved by variety reduction, the increase
in exploitable information according to Eq. (4.14), or the redundancy decrease
according to Eq. (4.21),also plays a role in the information effect of results handling.
These problems call for additional treatment, both mathematical (e.g. using informa-
tion-theoretical and fuzzy-set theoretical approaches) and methodological and philo-
sophical58.

From what has been stated in this chapter, the following is of importance for
analytical practice:

1) Transformation of analytical signal into analytical information proceeds either
by means of a stoichiometric constant (in "classical" chemical quantitative analysis)
or by means of the experimentally established calibration dependence.

2) We differentiate between the information content of the analytical signal and
the information gain, or amount of information derived from the results of quantita-
tive analysis. The relation between the information content of the signal and the
information contribution of the result is determined by how the signal is decoded
into the result. For the maximum relevant information to be obtained from a signal
of a given content, (i) the optimum model, i.e. shape of the calibration dependence
must be determined; (ii) the relation between o and o must be established for that
shape, and the equation for this relation must be employed as the mathematical model
in planning experiments to optimize the calibration process; and (iii) the calibration
process and its metrological backup must be such that the condition o cr be met
and 5 be statistically significant at a level (1 — c) = 095.

3) In choosing the optimum analytical strategy, not only a suitable analytical
method, providing a satisfactory signal must be selected, but the calibration must
be such that it enable all relevant information contained in the signal to be decoded.
4) A "feedback" should always function between the signal and the result; this

should consist in a control of the sensitivity, or batch taken, such that — particularly
in routine analysis — the results be associated with a roughly constant and suffi-
ciently high information gain free from unreasonably high redundancy, although
some redundancy is necessary.

5) The information effect associated with the handling of a set of results has two
aspects: a quantitative aspect, determined by the variety reduction, and a semantic
or pragmatic aspect given by the fact that it stimulates developing a chemical working
hypothesis or contributes to the corroboration of a given theory88.
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6. CONCLUSIONS

Growing requirements on the number and reliability of analytical results stimulated
the seeking for additional phenomena, physical ones in particular, which became the
basis of new analytial techniques. This brought about not only advance in practical
analytics but also methodological differentiation of analytical chemistry. While —
starting from the work of Ostwald75 — theoretical foundations of the individual
analytical methods have been well elaborated, a unified basis of the whole branch
of science was still lacking in the early 1970's. Malissa2 found this basis in the in-
formation-theoretical and system approach. At that time, information theory proved
to be an efficient tool in the assessment of analytical results and methods and their
optimization; a great number of papers and monographs have been devoted to
this topic4'7'941. When it turned out that measures introduced for the purposes
of communication techniques are insufficient in metrology and in quantitative
analysis, the divergence measure was proposed to serve as measurement informa-
tion48'55. The divergence measure was later extended34, which made it possible
to assess methods and results of quantitative single-component and multicomponent
analysis, to seek the optimum analytical strategy9, and to apply a unified approach
to the properties of analytical results and methods4 and to procedures referred to
as good analytical practice and quality data assurance36. Irrespective of whether
measures taken from communication theory or the divergence measure are used,
the information content of the signal or the gain attained by performing the analysis
are expressed in a basically identical manner, i.e. in terms of the difference between
the a priori and a posteriori uncertainties according to Eq. (1.4);only the ways the
uncertainties are expressed different. Since logarithmic uncertainty measures are
concerned, the difference between logarithms can be regarded as the logarithm of the
a priori-to-a posteriori ratio of the numbers of possibilities (Eq. (2.1)), intervals

(Eq. (3.7)) or variances (Eq. (3.13); hence, information content can be regarded as
a reduction of the number of possibilities, interval width, variances, etc.

The application of information theory to identification and qualitative analysis
(Chapter 2) is of particular importance in view of the fact that the results of these
analyses are nominal quantities, unamenable to statistical evaluation. Moreover, it
suffices to express the uncertainty by means of Shannon's entropy for the a priori
and a posteriori probabilities or for conditional probabilities as used for communi-
cation purposes. The application to quantitative one — component or multicom-
ponent analysis (Chapters 3 and 4) supplements suitably statistical assessment of
results and method optimization; it is, however, based on the divergence measure
or extended divergence measure, which enables the effect of not only random
("statistical") error but also of bias to be evaluated. The extended divergence measure
also pointed to the importance of metrological backup of the analytical process,
calibration in particular (Chapter 5). Many problems of multicomponent analysis
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(Chapter 4) can be solved by means of information theory applying the system
approach: information theory makes possible quantification4 of the most important
properties of multicomponent analysis and determination of the amount of informa-
tion gained by separation of the components, enables us — combined with fuzzy
set theory — to express the usable amount of information and the corresponding
redundancy, and plays a key role in seeking the optimal compromise conditions
of the multicomponent quantitative analysis process. It is clear that in multicom-
ponent analysis the combination of information theory methods with the system
approach is considerably more important than in single-component analysis. Some
problems have not yet been solved satisfactorily enough; for instance, identification
of the amount of information gained by multicomponent analysis (Eq. (1.15)) with
the sum of information gains of all results actually is not fully justified. Some solu-
tion for dependent results, though not quite perfect, consists in the introduction of
the concept of usable amount of information (Eq. (4.14)); this accounts for the
semantic dependence but not for, e.g., the mutual correlation of results in the mathe-
matico-statistical sense. Information theory may also help to advance in seeking
for a suitable model of multicomponent analysis performed by using a multichnnel
instrument, for a model of combined ("hyphenated") techniques, etc.

At present, information theory is largely applied in relation to analytical signals,
results and methods. Information effect achieved by the treatment of sets of results
has been so far expressed (to a first approximation) as variety reduction. In a more
comprehensive approach, the semantic and pragmatic aspects should also be ad-
dressed in addition to the quantitative aspect given by this reduction (Chapter 5).

Papers in the series Theory of Information as Applied in Analytical Chemistry,
published in this journal'236, are based on expressing the information content
of signal and the information gain of results as the difference between the a priori
and a posteriori uncertainties, which proves to suit well in practice9'3638'56'57'69.
In some cases of analytical methods and results, some alternative way of expressing
the information contribution may appear useful. Appropriate measures then can be
sought in the monographs by Peters44, Vajda76, Aczél and Daróczy77, Kullback78
or Khinchin79. Entropy is the subject of two papers by Katètov80. Of importance
in analytical results handling is Kovanic's gnostic theory81, which is based on the
concept of information that is not defined in a probabilistic manner. Many stimulating
ideas can be found in two monographs by Brillouin82'83. The importance of informa-
tion theory for modern analytical chemistry has been stressed, e.g., by Currie84,
Kragten85, Vandeginste86, Kateman47, and others. Basic concepts are outlined
in monographs10'11 and in papers39'40'45. The importance of the concept of infor-
mation for the theory of experiment was first pointed-out by Nalimov87. The logic
of scientific discovery is discussed by Popper88.

Collect. Czech. Chem. Commun. (Vol. 56) (1991)



Review 557

REFERENCES

1. Janák J.: Chem. Listy 73, 370 (1981).
2 Malissa H.: Automation in und mit der analytischen Chemie. Verlag der Wiener Medizin,

Akademie, Wien 1972.
3. Doerifel K.: Fresenius Z. Anal. Chem. 330, 24 (1988).
4. Eckschlager K.: Chem. Listy 83, 1009 (1989).
5. Eckschlager K.: Errors. Measurement and Results in Chemical Analysis. Van Nostrand,

London 1969.
6. Horwitz W.: Anal. Chem. 50, 521A (1987).
7. Musil J, Eckschlager K.: Chem. Listy 81, 611 (1987).
8. ObrusnIk I.: Chem. Listy 81, 1256 (1987); 83, 561 (1989).
9. Doerifel K., Eckschlager K.: Optimale St rategien in der Analytik. VEB Verlag für Grundstoff-

industrie, Leipzig 1981.
10. Eckschlager K., tèpánek V.: information Theory as Applied to Chemical Analysis. Wiley,

New York 1979.
ii. Eckschlager K., tpánek V.: Analytical Measurement and information. Research Studies

Press, Letchworth 1985.
12. Eckschlager K.: Collect. Czech. Chem. Commun. 36, 3016 (1971).
13. Eckschlager K.: Collect. Czech. Chem. Commun. 37, 137 (1972).
14. Eckschlager K.: Collect. Czech. Chem. Commun. 37, 1486 (1972).
15. Fckschlager K.: Collect. Czech. Chem. Commun. 38, 1330 (1973).
16. I-ckschlager K.: Collect. Czech. Chem. Commun. 39, 1426 (1974).
17. [ckschlager K., Vajda I.: Collect. Czech. Chem. Commun. 39, 3076 (1974).
I . Fckschlager K.: Collect. Czech. Chem. Commun. 40, 3627 (1975).
19. Fckschlager K.: Collect. Czech. Chem. Commun. 41, 1875 (1975).
20. Fckschlager K.: Collect. Czech. Chem. Commun. 41, 2527 (1976).
21. Eckschlager K.: Collect. Czech. Chem. Commun. 42, 225 (1977).
22. Eckschlager K.: Collect. Czech. Chem. Commun. 42, 1935 (1977).
23. Eckschlager K.: Collect. Czech. Chem. Commun. 43, 231 (1978).
24. [ckschlager K.: Collect. Czech. Chem. Commun. 44, 2373 (1979).
25. Fckschlager K., tèpánek V.: Collect. Czech. Chem. Commun. 45, 2516 (1980).
26. Eckschlager K.: Collect. Czech. Chem. Commun. 46, 478 (1981).
27. Eckschlager K., tpánek V.: Collect. Czech. Chem. Commun. 47, 1195 (1982).
28. Eckschlager K.: Collect. Czech. Chem. Commun. 47, 1580 (1982).
29. Eckschlager K., Král M.: Collect. Czech. Chem. Commun. 49, 2342 (1984).
30. Eckschlager K., tëpánek V.: Collect. Czech. Chem. Cornmun. 50, 1359 (1985).
31. Eckschlager K.: Collect. Czech. Chem. Commun. 53, 1647 (1988).
32. Eckschlager K., Fusek J.: Collect. Czech. Chem. Commun. 53, 3021 (1988).
33. Eckschlager K.: Collect. Czech. Chem. Commun. 54, 1770 (1989).
34. Eckschlager K.: Collect. Czech. Chem. Commun. 54, 3031 (1989).
35. Eckschlager K.: Collect. Czech. Chem. Commun. 55, 91(1990).
36. F.ckschlager K.: Collect. Czech. Chem. Commun. 55, 2624 (1990).
37. Danzer K., Eckschlager K., Wienke D.: Fresenius Z. Anal. Chem. 327, 312 (1987).
38. Danzer K., Eckschlager K., Matherny M.: Fresenius Z. Anal. Chem. 334, 1 (1989).
39. Eckschlager K., tëpánek V.: Chemlab. 1, 273 (1987).
40. Eckschlager K., tpánek V., Danzer K.: J. Chemometrics 4, 195 (1990).
41. Mocák J., Eckschlager K.: Chem. Listy 81, 1, 126 (1987).

Collect. Czech. Chem. Commun. (Vol. 56) (1991)



558 Eckschlager:

42. Belyaev Yu. J., Koveshnikova T. A.: Zh. Anal. Khim. 27, 375 (1972); Belyaev Yu. J.: Zh.
Anal. Khim. 32, 2298 (1977).

43. Musil J.: Chem. Listy 78, 731 (1984).
44. Peters J.: Einfuhrung in die ailgemeine Informationstheorie. Springer, Heidelberg 1967.
45. Eckschlager K., tpánek V.: Anal. Chem. 54, 11 15A (1982).
46. Ehrlich G., Friedrich K., Kucharkowski R., Stahlberg R.: Z. Chem. 24, 204 (1984).
47. Kateman G.: Anal. Chem. Acta 191, 215 (1986).
48. Eckschlager K.: Fresenius Z. Anal. Chem. 277, 1 (1975).
49. Cleij P., Dijkstra A.: Fresenius Z. Anal. Chem. 289, 97 (1979).
50. Eckschlager K.: Chem. Prum. 32, 38 (1982).
51. Liteanu C., Rica I.: Statistical Theory and Methodology of Trace Analysis. Horwood, Chi-

chester 1979.
52. Liteanu C., Rica I.: Anal. Chem. 51, 1986 (1979).
53. Malissa H.: Fresenius Z. Anal. Chem. 256, 7 (1971).
54. Danzer K.: Z. Chem. 13, 69, 229 (1973).
55. Vajda I., Eckschlager K.: Kybernetika 16, 120 (1980).
56. ObrusnIk I., Eckschlager K.: J. Radioanal. Nucl. Chem. 112, 233 (1987).
57. ObrusnIk K., Eckschlager K.: Anal. Chem. 62, 565 (1990).
58. Malissa H.: Fresenius Z. Anal. Chem. 331, 236 (1988); 333, 285 (1989).
59. Malissa H.: Mikrochim. Acta 1986, I., 371.
60. Kaiser H.: Fresenius Z. Anal. Chem. 209, 1 (1965); 231, 80 (1966).
61. Eckschlager K., tpánek V.: Mikrochim. Acta 1978, 1., 107; 1981, II., 143.
62. Currie L. A.: Anal. Chem. 40, 586 (1968).
63. Bayermann K.: Organische Spurenanalyse. Thieme, Stuttgart 1982.
64. Danzer K., Hopfe V., Marx G.: Z. Chem. 22, 332 (1982).
65. Kaiser H.: Fresenius Z. Anal. Chem. 260, 252 (1972).
66. Otto M., Wegscheider W.: Anal. Chim. Acta 180, 445 (1986).
67. Malissa H., Rend! J., Marr I. L.: Talarita 22, 597 (1975).
68. Kateman G., Pijpers F. W.: Quality Control in Analytical Chemistry. Wiley, New York 1981
69. Danzer K., Eckschlager K.: Talanta 25, 725 (1978).
70. Eckschlager K.: Z. Chem. 16, 111(1976).
71. Danzer K.: Z. Chem. 13, 69 (1973).
72. Frank 1., Veress G., Pungor E.: Hungar. Sci. Instr. 54, 1 (1982).
73. Kragten J., de Jagher P. C., Decnop-Weener L. G.: Anal. Chim. Acta 180, 457 (1986).
74. Massart D. L., Dijkstra A., Kaufman L.: Evaluation and Optimization of Laboratory Methods

aid Anulytical Procedures. Elsevier, Amsterdam 1978.
75. Otwa1d W.: Die wissenschaftlichen Grundlagen der analytischen Chemie. W. Engelmann,

Leipzig 1894.
76. Vajda 1.: TeOria informdcie a statistického rozhodovania. Alfa, Bratislava 1982.
77. Aczél J., Darózzy Z.: On Measures of Information and Their Characterizations. Academic

Press, New York 1975.
78. Kuliback S.: Information Theory and Statistics. Wiley, New York 1959.
79. Khinchin A. 1.: Mathematical Foundation of Information Theory. Dover, New York 1957.
80. Kattov M.: Czech. Math. J. 108, 564 (1983); 110, 565 (1985).
81. Kovanic P.: Probl. Control Inform. Theory 13, 259, 309 (1984).
82. Brillouin L.: Science and Information Theory. Academis Press, New York 1962.
83. Brillouin L.: Scientific Uncertainty and Information. Academic Press, New York 1966.
84. Currie L. A.: J. Res. Nat!. Bur. Stand. 93, 193 (1988).

Collect. Czech. Chem. Commun. (Vol. 56) (1991)



Review 559

85. Kragten G.: Presented at the conference Compana 88, Jena 1988.
86. Vandeginste B. G. M.: Top. Curr. Chem. 141, 1 (1987).
87. Nalimov V. I.: Teoriya eksperimenta. Nauka, Moskva 1971.
88. Popper K. R.: Logik der Forschung. 8th: Ed. J.C.B. Mohr, TUbingen 1984.

Translated by P. Adámek.

Collect. Czech. Chem. Commun. (Vol. 56) (1991)




